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Abstract

We present the source separation framework scarlet for multi-band images, which is based on a generalization of the Non-negative
Matrix Factorization to alternative and several simultaneous constraints. Our approach describes the observed scene as a mixture of
components with compact spatial support and uniform spectra over their support. We present the algorithm to perform the matrix
factorization and introduce constraints that are useful for optical images of stars and distinct stellar populations in galaxies, in
particular symmetry and monotonicity with respect to the source peak position. We also derive the treatment of correlated noise
and convolutions with band-dependent point spread functions, rendering our approach applicable to coadded images observed
under variable seeing conditions. scarlet thus yields a PSF-matched photometry measurement with an optimally chosen weight
function given by the mean morphology in all available bands. We demonstrate the performance of scarlet for deblending crowded
extragalactic scenes and on an AGN jet – host galaxy separation problem in deep 5-band imaging from the Hyper Suprime-Cam
Stategic Survey Program. Using simulations with prominent crowding we show that scarlet yields superior results to the HSC-
SDSS deblender for the recovery of total fluxes, colors, and morphologies. Due to its non-parametric nature, a conceptual limitation
of scarlet is its sensitivity to undetected sources or multiple stellar population within detected sources, but an iterative strategy
that adds components at the location of significant residuals appears promising. The code is implemented in Python with C++
extensions and is available at https://github.com/fred3m/scarlet.

Keywords: methods: data analysis, techniques: image processing, galaxies: structure, Non-negative matrix factorization

1. Introduction

Modern astronomical wide-field surveys cover large areas
of the sky at ever increasing depths, revealing more objects and
low-surface-brightness features of extended objects that were
previously too faint to detect. These gains drive investigations
into galactic, extragalactic and cosmological phenomena at an
unprecedented level of detail and statistical power. On the other
hand, because of the enhanced sensitivity, a larger fraction of
the observed area is associated with detectable objects, thereby
increasing the chance that multiple objects overlap. This so-
called “blending” constitutes a major concern for the analysis
of existing and upcoming surveys, especially those that observe
from the ground.

The majority of methods for measuring the properties of ce-
lestial objects assume that every object can be considered iso-
lated. If that assumption holds, well-defined and accurate mea-
surements of the flux, position, shape, and morphology can rou-
tinely be made with methods that are either based on moments
of the light distribution within some aperture or on parametric
fits to the images.

However, the notion of isolated objects is becoming increas-
ingly obsolete. With a limiting magnitude of i ≈ 24, DES1

Email addresses: peter.melchior@princeton.edu (Peter Melchior),
fredem@princeton.edu (Fred Moolekamp)

1https://www.darkenergysurvey.org

(Dark Energy Survey Collaboration, 2016) finds that 30% of
galaxies suitable for weak-lensing measurements are affected
by blending (Samuroff et al., 2018). For HSC2 (Aihara et al.,
2018a), whose Wide survey has a limiting magnitude of i ≈ 26,
Bosch et al. (2018) find that 58% of measured objects are in
blended groups, a dramatic increase despite a substantially bet-
ter average seeing than DES. LSST3 (Ivezic et al., 2008) ex-
pects to reach i ≈ 27 after 10 years of operations , and it is
estimated that 63% of observed galaxies will have Sérsic model
photometry that is altered by more than 2% due to the presence
neighbors (Sanchez et al., in prep.). Even more problemati-
cally, in a comparison study of HST and Subaru imaging of a
galaxy cluster field, where the Subaru data had similar seeing
and depth so as to serve as a proxy for LSST, Dawson et al.
(2016) found that 14% of observed galaxies are blended but not
recognized as such in the ground-based images. Slightly larger
numbers for unrecognized blends are found for HSC in a study
that inserted fake objects into real survey images to infer how
many of them could be recovered (Murata et al., in prep.).

This lack of separability between objects necessitates the
employment of techniques that analyze entire scenes with over-
lapping objects. For direct measurements, such as moments
within apertures, there is no accurate way to correct for the ex-
cess light from overlapping objects because such a correction

2http://hsc.mtk.nao.ac.jp/ssp/
3http://lsst.org
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depends e.g. on radial profiles of the objects involved, which
cannot be determined well for blends. As a consequence, mul-
tiple objects need to be modeled either iteratively (by masking
all but one) or simultaneously, often requiring sophisticated and
fine-tuned schemes to prevent unstable or physically implau-
sible solutions (e.g. Barden et al., 2012; Drlica-Wagner et al.,
2018). Any such scheme is suitable to extract and separate the
objects in celestial scenes, i.e. to “deblend” those scenes. Dif-
ferences between the schemes include the propagation of er-
rors, which conceptually favors simultaneous approaches, and
whether the desired measurements are generated directly from
deblender models or by passing them on to established mea-
surement algorithms for isolated objects.

Traditional deblending approaches in astronomy are achro-
matic, i.e. they employ information from only a single im-
age. SExtractor detects blending by thresholding an image at
a range of intensity levels and searching for sets of pixels that
are connected at a lower threshold but split into several con-
nected regions at a higher one (Bertin & Arnouts, 1996). As a
consequence of the splitting approach, the association of pixels
to objects is unique and exclusive, i.e. in the internal represen-
tation of blended objects they do not overlap. This unrealistic
notion has necessitated mitigation strategies or fine-tuning to
prevent “over-deblending” of larger galaxies caused by smaller
and fainter companions or interlopers (e.g. Rix et al., 2004).

The deblender in the SDSS Photo pipeline (Lupton, in prep.)
does allow for overlap between nearby objects and, consequently,
needs to estimate the portion of any pixel’s flux that is due to
each object. It uses a two-step approach, in which first a tem-
plate is constructed for each object based on the requirement
that pixel values symmetrically across the object’s peak pixel
be identical; they are generally not, so the minimum pixel value
of those two pixels is adopted for both. Then, the original im-
age values are projected onto those templates, associating each
pixel’s flux to different objects in proportion to the amplitude
of the respective templates. Despite very few assumptions, the
method mostly separates sources into physically plausible ob-
jects but struggles with situations where a central object is sym-
metrically surrounded by neighbors, for instance a blend with
three peaks in a row (Lupton, in prep.).

More recently, Zhang et al. (2015) and Connor et al. (2017)
proposed variants of inpainting techniques, where the relevant
pixels of blended objects are replaced by an estimate of a lo-
cal variable background, working inwards from an initially de-
fined outline. The portion of the pixel flux above the back-
ground estimate is attributed to the respective object. These ap-
proaches implicitly account for blending by assuming that the
background captures the flux contributions from neighboring
objects. This is particularly useful when recovering small ob-
jects in multi-scale blending situations like the cores of galaxy
clusters and removing them from the scene so that large objects
can be measured separately.

While effective in many cases, all of the deblending schemes
outlined above employ heuristic arguments for how to separate
overlapping sources. They also perform the pixel–object asso-
ciation sequentially, one object at a time, thus losing the ad-
vantages of a simultaneous solution, for instance the ability to

explore the degeneracies that arise because the objects are not
isolated. However, it is our opinion that the biggest limitation
stems from the restriction to a single image, and therefore a sin-
gle filter band, while most modern surveys observe the sky in
several filters. A visual inspection of multi-band images clearly
suggests that color can serve as a powerful discriminator be-
tween different objects, even with severe overlap (see Figure 1).

MuSCADeT (Joseph et al., 2016) addresses both limitations
by building a joint model of multi-band image data. As their
model is non-parametric, the number of degrees of freedom is
large, which leads to many possible degeneracies in the solu-
tions, so they demand that the spatial distribution of each source
be sparse in the starlet (a form of isotropic wavelet) domain.
The resulting solutions extract preferentially compact features
down to the noise level, using a set of previously identified col-
ors for each feature. For applications to wide-field multi-band
data, we cannot generally assume to a priori identify the color of
an object in the scene because there might not be a single pixel
whose color is uncontaminated by other objects. We therefore
seek the ability to update both spectral and morphological char-
acteristics of the objects. While sharing noticeable similarities
with MuSCADeT regarding the use of a non-parametric con-
strained morphological model, one can consider our approach
an extension that also updates the source spectra as well as a
generalization that allows an arbitrary number of constraints to
be placed on each source.

The outline of the paper is as follows: We introduce our
approach, dubbed scarlet, in Section 2, demonstrate its perfor-
mance on real data and simulations in Section 3, and conclude
in Section 4.

2. Methodology

We base our deblender on the assumption that astronomical
scenes are superpositions of multiple components, each with

1. a spatially compact support and

2. a constant spectrum over that support.

For stellar fields this is obviously true, but even for galaxies,
especially marginally resolved ones, which constitute the vast
majority of galaxies in deep surveys, the assumption is appro-
priate. In addition, even large, extended galaxies can be thought
of as conglomerations of components (e.g. bulges, discs, bars,
star forming regions) for which the assumptions above hold at
least approximately.4 For instance, the popular bulge-disc de-
composition for galaxies (e.g. MacArthur et al., 2003) is justi-
fied by this interpretation. We note that the assumption of linear
superposition implies that components do not interact, which is
correct only for transparent emitters. Absorption, e.g. by dust
in the galaxy, can be approximated by allowing negative values
in the source spectrum, but substantial opacities cannot fully be

4In the literature the terms “source separation” and “component separation”
are often used interchangeably. To better reflect the hierarchical nature of astro-
physical scenes, we will define the term “Source” as a collection of co-centered
components that belong to the same astrophysical object.
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Figure 1: Left: False-color image of grizy coadd images Y from the HSC UltraDeep COSMOS data release, shown with an arcsinh stretch. The scene spans 25×25
arcsec2. Object detections and ellipse fits are performed by SExtractor on the detection image (sum of the five coadds). Center: scarlet model AS of the scene
with single-component sources for each detection. Right: The residual Y−AS reveals the presence of additional sources or color variations within detected sources.

modeled because the effect depends on the amount of absorbing
material and the intensity of the background radiation.

The assumptions above appear to lend themselves to a para-
metric modeling framework, where one assumes to know the
shapes of the components and potentially their intrinsic spec-
trum, exploiting quite tight relations between colors and mor-
phologies exhibited by galaxies in the late universe (e.g. Con-
selice, 1997; Ball et al., 2008). While drastically reducing the
number of optimization parameters, we are critical of this ap-
proach for two reasons: First, in the translation of an intrinsic,
restframe spectrum to the observed broadband colors one needs
to take the galaxy’s redshift into account, which is equivalent
to estimating a photometric redshift as part of the deblending
process. If the redshifting prescription is incorrect, e.g. be-
cause of a limited library of spectra or the evolution of those
spectra with redshift, it would affect the properties of the de-
blended components—not only their recovered spectra but also
their shapes. Second, at the stage in the analysis pipelines of
large astronomical surveys where we envision the deblender
to operate, it will not necessarily be established what kind of
sources are in the scene; in other words, a suitable parameteri-
zation is probably not known. This is most evident when look-
ing at the star-galaxy distinction: for stars, three parameters are
sufficient (two centroid coordinates and one amplitude), while
even simple galaxy models need at least one more parameter
(the size). Model-fitting under those conditions can be done by
transdimensional sampling (e.g. Green, 1995), but the compu-
tational costs are likely too high for large-volume data sets.

Because of these concerns, we seek to characterize the scenes
without making questionable astrophysical assumptions, which
means describing colors in the observed frame and morpholo-
gies in the free-form space of image pixels.

2.1. Non-negative Matrix Factorization

We assume that an astronomical scene Y that we seek to
analyze is organized in the form of a multi-band image cube of
aligned images in B bands, each of which is suitably flattened

to have a total number of N pixels. Our previous assumptions
give rise to a multi-band model M as a sum of a finite number
of components K,

M =

K∑
k=1

A>k × Sk = AS, (1)

where Ak ∈ RB is the amplitude of component k across all
bands, i.e. its spectral energy distribution (SED), and Sk ∈ RN

is the spatial shape of that component. By arranging the Ak as
columns of A ∈ RB×K and Sk as the rows of S ∈ RK×N , we have
a model M that is given by the product of two matrix factors.

With a homoscedastic Gaussian error model, which is ap-
propriate for most extragalactic images in the optical, the like-
lihood function is

f (A,S) =
1
2
‖Y − AS‖22 (2)

where ‖.‖2 denotes the element-wise L2 (Frobenius) norm.5 In
its simplest form, the Non-negative Matrix Factorization (NMF
Paatero & Tapper, 1994) then amounts to fitting A and S such
that they minimize f and obey the non-negativity constraint,
which is given by the indicator function of the set of non-negative
matrix elements:

g+(X) =

0 if Xmn ≥ 0 ∀m, n
∞ else.

(3)

In other words, one seeks to minimize f (A,S) + g+(A) + g+(S).
The classical way of solving this NMF problem is known as
“multiplicative updates” (Lee & Seung, 2001), which suffers
from poor convergence if the constraints strongly work against

5The objective function in Equation 2 is insufficient for dealing with real-
istic multi-band data, which generally exhibit correlated noise and correlated
signals, the former from warping the images to rectify any astrometric distor-
tion, the latter because of the blurring from the point spread function. We will
work out in Section 2.4 and Section 2.5 how to deal with both effects.
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the minimum of the objective function. Moreover, in its sim-
plest form the NMF is hampered by a degeneracy that stems
from the transformation (A,S) → (AQ,Q−1S) with an arbi-
trary invertible matrix Q, which means power can be shifted
from A to S or vice versa, hampering convergence to a well-
defined solution. To compensate one can introduce another
constraint on the norms of either A or S. The most natural
normalization for astronomical scenes is to require that each
component’s SED sums up to unity. We therefore seek to mini-
mize f (A,S) + g+(A) + gunity(A) + g+(S), where gunity is another
indicator function of the set of matrices in which the columns
are properly normalized.

We do so by using a two-block variant of the “proximal gra-
dient method”. In short, a closed smooth proper convex func-
tion f (x) under a convex constraint function g(x) with x ∈ Rn

can be minimized with the following sequence:

xit+1 ← proxλitg

(
xit − λit∇ f (xit)

)
. (4)

The step size λ must be chosen from (0, 2/L], where L is the
Lipschitz constant of ∇ f . The function g is not directly evalu-
ated but accessed through its proximal operator,

proxλg (x) ≡ argmin
v

{
g (v) +

1
2λ
‖x − v‖22

}
. (5)

The proximal operator of g effectively hides the infinite values
and the non-differentiability of its underlying function. For in-
stance, the proximal operator of the indicator function IC of a
non-empty set C is the Euclidean projection operator onto the
set—i.e. it yields v ∈ C that is nearest to x—and the scaling
parameter λ is irrelevant. In particular,

prox+(x) =
(
x+

1 , . . . , x
+
n
)

with x+
i ≡ max(0, xi)

proxunity(x) = ‖x‖−1
1 x,

(6)

For many other classes of constraint functions proximal opera-
tors have analytic forms, which means that the minimization of
Equation 5 does not have to be carried out. For more details on
proximal methods, we refer the reader to Combettes & Pesquet
(2011) and Parikh et al. (2014).

As long as there is only one constraint per variable, we can
interleave update steps of the form of Equation 4 that minimize
f (A |S) and those that minimize f (S |A), effectively a proximal
implementation of a coordinate descent method, as shown in
Algorithm 1. Note that we merged g+(A) + gunity(A) into one
proximal operator proxunity+ ≡ prox+

(
proxunity

)
, which can be

done because the two constraints commute, i.e. they do not
interfere. This reduces the problem to calculating the gradients

∇A f (A,S) = −(Y − AS) S>

∇S f (A,S) = −A>(Y − AS)
(7)

and their Lipschitz constants

LA =
∥∥∥SS>

∥∥∥
s and LS =

∥∥∥A>A
∥∥∥

s , (8)

where ‖.‖s refers to the spectral norm. The sequence in Algo-
rithm 1 approaches a fixed point that is also a local minimum of

Algorithm 1 Proximal Gradient NMF
Two matrix factors A and S are independently updated with a sequence
of gradient steps followed by projections to obey the constraints.

1: procedure NMF-PGM(A0,S0)
2: for it = 0, 1, . . . do
3: λit

A ←
∥∥∥SitSit>

∥∥∥−1
s

4: Ait+1 ← proxunity+

(
Ait − λit

A∇A f (Ait,Sit)
)

5: λit
S ←

∥∥∥Ait+1>Ait+1
∥∥∥−1

s

6: Sit+1 ← prox+

(
Sit − λit

S∇S f (Ait+1,Sit)
)

f and can therefore be terminated whenever the change between
successive iterations falls below a user-defined threshold.

This approach is similar to the one of Rapin et al. (2013) in
that the minimization is performed in two blocks and that con-
straints are expressed by their proximal operators, but we only
perform one gradient step instead of seeking the exact solution
for every block in every iteration. This reduces the number
of gradient and constraint evaluations while still yielding a se-
quence that is guaranteed to converge (Lin, 2007; Xu & Yin,
2013).

2.2. Constrained Matrix Factorization
For many practical applications we want to be able to im-

pose additional constraints besides (or instead of) non-negativity.
We will give a list of alternative constraints in Section 2.3, but
it is useful to think of constraints more generally as logarithms
of priors on the solution. In addition, we are often forced to
impose multiple simultaneous constraints to deal with the large
number of unknowns in Equation 1, especially when the num-
ber of components K is larger than the number of bands B. To
reflect these more general conditions, we favor the term “Con-
strained Matrix Factorization” (CMF) instead of NMF.

With the direct projection method of Equation 4, we can
only accommodate any one proximal operator per variable, even
though non-interacting constraints can be daisy-chained to act
like a single one, as we have done with proxunity+. One could
generalize this approach by the method of Alternating Projec-
tions, also known as Projection onto Convex Sets (Bauschke &
Borwein, 1996), but that still requires that the proximal oper-
ators act directly on the variables A and S. Often, it is ben-
eficial to express constraints in a transformed domain, for in-
stance demand that the solution be sparse in that domain (e.g.
Rapin et al., 2014). We therefore prefer the Alternating Direc-
tion Method of Multipliers (ADMM, Gabay & Mercier, 1976;
Glowinski & Marroco, 1975; Eckstein & Bertsekas, 1992; Boyd
et al., 2011). In its basic form it seeks to

minimize
x

f (x) + g (Lx) (9)

which allows us to introduce an arbitrary matrix L. For this
work L will be a gradient or symmetry operator, but it could
as well be a Fourier or wavelet transform, etc. The previous
equation can be re-written in “consensus form”

minimize f (x) + g (z)
subject to Lx − z = 0, (10)
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which suggests an approach that splits the optimization into two
separate tasks: one that minimizes f and another that satisfies
g by introducing the auxiliary variable z (Douglas & Rachford,
1956). The updating scheme also introduces the dual variable u,
which connects the two tasks, creating the following sequence:

xit+1 ← proxλ f

(
xit − λ

ρ
L>

(
Lxit − zit + uit

))
zit+1 ← proxρg

(
Lxit+1 + uit

)
uit+1 ← uit + Lxit+1 − zit+1,

(11)

where the scaling parameters need to satisfy 0 < λ ≤ ρ/||L||2s .6

Two aspects of this sequence are remarkable. The function f
is only accessed through its proximal operator, which means it
does not need to be differentiable. In our case, f is differen-
tiable, and we can consider

proxλ f (x) ≡ x − λ∇ f (x) (12)

the corresponding proximal operator of the first-order approx-
imation to f .7 Second, the linear operator L does not need to
be invertible; it and its transpose are only used for dot products,
rendering the updates particularly efficient with sparse matrices.

In Moolekamp & Melchior (2018), we have demonstrated
that the ADMM can be extended to multiple variables of a func-
tion f that is convex in each of those variables by constructing
a block-updating sequence analogous to Algorithm 1. For the
CMF, A and S (which we will call X1 and X2 and enumerate
with the index j for the remainder of this subsection) thus have
their own set of ADMM auxiliary variables Z1,U1,Z2,U2. In
addition, we have introduced a method that allows each X j to be
subject to multiple simultaneous constraints, one pair (Z ji,U ji)
for each constraint g ji(X j) with i ∈ {1, . . . ,M j}. Combined, our
new method, dubbed scarlet, provides the flexibility we seek
for deblending astronomical scenes via the CMF. It will

minimize
X1,X2

f (X1,X2) +
∑2

j=1
∑M j

i=1 g ji

(
Z ji

)
subject to L jiX j − Z ji = 0 ∀ j ∈ {1, 2} and i ∈ {1, . . . ,M j}

(13)
through the Block-Simultaneous Method of Multipliers (bS-
DMM Moolekamp & Melchior, 2018).

The core working principle of scarlet is given in Algo-
rithm 2. The ADMM updates of Equation 11 are performed
in lines 10–13, using the gradient updates from Equation 7 in
the form of Equation 12 in line 10. The step sizes λ j in line 8
are given as before by 1/L j with the Lipschitz constants from
Equation 8. It is worthwhile pointing out that in the limit of
all constraints being satisfied, Z = X and U = 0, in which case
Algorithm 2 is equivalent to Algorithm 1.

Following Boyd et al. (2011), we implement stopping crite-
ria (on line 14) based on primal residual Pit+1 = LXit+1 − Zit+1

and the dual residual Dit+1 = 1
ρ
L>

(
Zit+1 − Zit

)
. These residuals

6For the x-update, we use a linearized form of the ADMM, which is known
as split inexact Uzawa method (e.g. Esser et al., 2010; Parikh et al., 2014).

7In fact, we can treat the entire projected gradient step of Equation 4 as a
first-order approximation of f + g, which means we can satisfy a single con-
straint in the direct domain, such as non-negativity, without having to invoke
the auxiliary variables z and u.

Algorithm 2 Block-SDMM Constrained Matrix Factorization
The matrix factors A and S are treated as two blocks X j with j ∈ {1, 2}
and independently updated with a sequence of gradient steps proxλ j f , j

and jointly optimized with an arbitrary number of constraint functions
g ji with i ∈ {1, . . . ,M j}. All constraints are expressed as proximal
operators proxρ jig ji

and include transformation matrices L ji (cf. Equa-
tion 11 for the generic ADMM update sequence). The parameters λ j

and ρ ji are the maximum allowable step sizes in this scheme.

1: procedure CMF-BSDMM(A0,S0)
2: X0

1,X
0
2 ← A0,S0

3: for j = 1, 2 do
4: Z0

ji ← L jiX j ∀i ∈ {1, . . . ,M j}

5: U0
ji ← 0 ∀i ∈ {1, . . . ,M j}

6: for it = 0, 1, . . . do
7: for j = 1, 2 do
8: λit

j ← j == 1?
∥∥∥Xit

2Xit>
2

∥∥∥−1
s :

∥∥∥Xit+1>
1 Xit+1

1

∥∥∥−1
s

9: ρit
ji ← 2M j λ

it+1
j

∥∥∥L ji

∥∥∥2
2

10: Xit+1
j ← proxλ j f , j

(
Xit

j −
∑M j

i=1
λ j

ρ ji
L>ji

(
L jiXit

j − Zit
ji + Uit

ji

))
11: for i = 1, . . . ,M j do
12: Zit+1

ji ← proxρ jig ji

(
L jiXit+1

j + Uit
ji

)
13: Uit+1

ji ← Uit
ji + L jiXit+1

j − Zit+1
ji

14: if
∧

ji

{∥∥∥∥Pit+1
ji

∥∥∥∥
2
≤ εpri ∧

∥∥∥∥Dit+1
ji

∥∥∥∥
2
≤ εdual

}
then

break

describe how close the current X is to satisfying the constraint in
the transformed domain and how much Z changes, respectively.
To assess primal and dual feasibility, we require∥∥∥Pit+1

∥∥∥
2 ≤ ε

pri ≡
√

p εabs + εrel max
{∥∥∥LXit+1

∥∥∥
2 ,

∥∥∥Zit+1
∥∥∥

2

}
and∥∥∥Dit+1

∥∥∥
2 ≤ ε

dual ≡
√

n εabs + εrel/ρ
∥∥∥L>Uit+1

∥∥∥
2 ,

(14)

where p and n are the number of elements in Z and X, respec-
tively. The error thresholds εabs and εrel can be set at suitable
values, depending on the precision and runtime constraints of
the application.

The procedure outlined in Algorithm 2 yields point esti-
mates of the matrix factors. Uncertainties on each factor are
currently calculated by linear error propagation based on Equa-
tion 2. While those uncertainties provide estimates of the sig-
nificance of each element of the matrix factors, they do not
properly capture the interdependence of the model components
or the effects of the constraints on the degeneracies between
them. Fully accurate uncertainties are difficult to estimate be-
cause of the non-differentiability of the constraint functions.
We plan to investigate ways to better characterize the uncer-
tainties of the scarlet model in forthcoming work.

This concludes our presentation of the general approach we
have adopted in scarlet. A reader who is mostly interested in
the astrophysical applications can safely jump to Section 3 and
skip details of the formalism below.
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2.3. Constraints

The conventional NMF is capable of separating components,
but only from the color contrast between objects in the scene.
If the color contrast vanishes or the number K of overlapping
components gets large, the model in Equation 1 becomes in-
creasingly susceptible to degeneracies, where the mixture model
yields a fair representation of the scene but many of the individ-
ual components look implausible.

We thus prefer the flexibility of the CMF to impose addi-
tional priors or constraints based on existing knowledge or in-
tuition about how SEDs and morphologies are distributed. In
addition to non-negativity, which is justified for astronomical
sources that emit photons, we will routinely employ symmetry,
monotonicity, and sparsity constraints for the galaxy morpholo-
gies (see Section 3.2). We currently do not utilize priors on
galaxy or stellar SEDs, but we will demonstrate in Section 3.3
how color constraints can help in cases when additional stabil-
ity of the source extraction is desired.

We want to emphasize that scarlet is capable of incorporat-
ing any prior or constraint that can be expressed as a proximal
operator. We therefore think of it as a general-purpose com-
ponent separation framework that can be optimized for a wide
variety of applications.

2.3.1. Symmetry
We take guidance from the SDSS Photo deblender (Lup-

ton, in prep.), which, inspired by Doi et al. (1995), constructs
templates of the sources that are symmetric under 180◦ rota-
tions around the peak pixel. We formalize this requirement by
stating that

∀k, i : Sk,i − Sk, j = 0, (15)

where i and j are the indices of the symmetric partner pixels,8

which can be expressed in matrix form,

∀k : LsymmSk = 0, (16)

with a symmetry matrix Lsymm ∈ R(N/2−1)×N that has the ele-
ments (1,−1) for each of N/2 − 1 suitable pixel pairs (the peak
pixel is excluded). In this linearly transformed space, the con-
straint is imposed by the projection operator onto the zero vec-
tor, i.e. prox0(LsymmSk). The combination of the transformation
matrix and the proximal operator is required for any ADMM-
style constraint in Algorithm 2.

Compared to the SDSS Photo deblender, which adopts the
minimum value for both pixels in the symmetric pair, this op-
erator will converge to the mean of both pixels. This is a direct
consequence of the proximal operator being the Euclidean pro-
jection operator and the mean statistic having the least squared
error.

8In order to always have a well-defined partner for each pixel (other than
the peak pixel), the peak pixel needs to be in the center of the image, and the
number of pixels in the image must be odd in both directions. We achieve this
by defining a virtual box around each source that contains all of its pixels, with
the peak pixel at the box center.

2.3.2. Monotonicity
The prominent failure mode of the SDSS Photo deblender

arises from its templates not necessarily declining monoton-
ically from the peak pixel.9 While resolved images of real
galaxies may in detail show non-monotonic behavior, for in-
stance due to star-forming regions in the outer parts of spiral
galaxies, we prefer imposing this constraint for the bulk source
shape. An area that violates this constraint likely constitutes
a different stellar population, potentially with a color different
from the bulk model, and should thus be fit by adding another
(monotonic) component to the mixture model.

Monotonicity for two-dimensional features is not uniquely
defined. We use a form of radial monotonicity, i.e.

∀k, i :
∑

j∈U(i)

w jiSk, j − Sk,i ≥ 0, (17)

where U(i) is the set of neighbor pixels of i that are closer to
the peak than i, and the weights are normalized such that ∀i :∑

j w ji = 1. We implement two variants:

1. The neighborhood contains only the nearest neighbor of i in
the direction of the peak,U(i) = {NN(i)} and wNN(i),i = 1.

2. The neighborhood contains all three neighbor pixels that are
closer to the peak, and their weights are given by w ji =

cos
(
φ j − φi

)
, where φi denotes the angle from the center of

pixel i to the center of the peak pixel.

Unsurprisingly, we find the latter variant to yield models that
are somewhat softened in azimuthal direction, and they can vi-
olate monotonicity along the straight path from pixel i to the
peak, which variant 1 would obey.

As before, we rewrite the constraint in matrix form, ∀k :
LmonoSk ≥ 0, which can be enforced by the non-negativity con-
straint from Equation 6 in the transformed domain, prox+(LmonoS).

This enforcement of monotonicity can be slow to converge
in heavily blended regions. The scarlet package therefore con-
tains a projection operator in the direct domain, proxmono, which
constructs a monotonic version of its argument. While this con-
struction will in general not yield the monotonic solution that
is closest to the argument (the operator is thus in fact not a true
proximal operator), we have found it to be substantially more
robust and efficient in practice.

2.3.3. Sparsity
Sparsity refers to a solution that can be represented with a

small number or a low amplitude of coefficients in a particu-
lar domain. In the direct, i.e. the pixel, domain, sparsity con-
straints thus induce solutions with few non-zero pixels and/or
compressed pixel amplitudes, which can be useful to reduce the
impact of pixel noise. They are introduced by minimizing the
objective function and a penalty function based on the norm of
the solution, often the `2 or `1 norms or the `0 pseudo-norm, or

9To address this weakness, the implementation of the SDSS Photo de-
blender in the current HSC software stack imposes a monotonicity constraint
on previously smoothed templates.
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a combination of them. While the `2 norm is differentiable, the
other two are not. However, both `0 and `1 have simple proxi-
mal operators, known as “hard thresholding” and “soft thresh-
olding” operators, respectively:

proxλ`0
(x) = (xh

1, . . . , x
h
n) with xh

i =

0 if |xi| < λ

xi else

proxλ`1
(x) = (xs

1, . . . , x
s
n) with xs

i = sign(xi) max (0, |xi| − λ)
(18)

This is the first example of a proximal operator of a function
other than an indicator of a closed set. The parameter λ then
governs the strength of the penalty compared to the objective
function f .

Because scarlet allows arbitrary transformations of A and
S with linear operators L, the sparsity constraints can be applied
in the direct domain and/or in the transformed domain.

2.3.4. Other options
We do not attempt to provide a comprehensive list of pos-

sible constraints that are expressible by proximal operators. In-
stead, we discuss several that we found useful and refer the
reader to the appendix of Combettes & Pesquet (2011) and sec-
tion 6 of Parikh et al. (2014) for more details.

Spatially flat components, e.g. for fitting a uniform sky
emission, can be realized by projecting onto the mean (see dis-
cussion in Section 2.3.1): proxflat(x) = 1

n
∑n

i xi1n with x ∈ Rn.
To allow some amount of spatial variability, e.g. for de-

scribing Intra-Cluster Light, we find the Maximum Entropy reg-
ularization (Frieden, 1972) useful, which fundamentally seeks
to find the flattest distribution that is compatible with the data
by adding the (negative) Shannon entropy term

S =

N∑
i

pi log(pi) with pi = xi

/∑
xi (19)

to the objective function f . The proximal operator of S is

proxλS (x) = λ<

[
W

(
1
λ

exp
(x
λ
− 1

))]
, (20)

where W denotes the Lambert-W function.
By choosing the matrix L to represent a basis transform,

one can fundamentally alter the characteristics of the solution
one wants to isolate or penalize. A few examples with appli-
cations in data analysis are the Fourier transform (Hassanieh
et al., 2012), the wavelet transform (Rapin et al., 2014), or the
shapelet transform (Refregier, 2003). In the transformed do-
main, simple projection operators can then e.g. null undesired
frequencies.

Finally, instead of hard constraints one can also introduce
prior distributions on the solutions. If the prior distribution p(x)
is smooth, the corresponding proximal operator is given by the
gradient step of log(p) analogous to Equation 12; if it has hard
edges it can be represented by wrapping the gradient step in a
proximal gradient update as in Equation 4.

2.4. Heteroscedastic and correlated errors
Equation 2 does not account for heteroscedastic errors. Blan-

ton & Roweis (2007); Zhu (2016) introduced a simple exten-
sions to heteroscedastic errors with the matrix V of variances of
each pixel in Y:

f (A,S) =
∥∥∥∥V−

1
2 ◦ (A · S − D)

∥∥∥∥2

2
, (21)

where ◦ denotes the element-wise, or Hadamard, product. It is
straightforward to adjust the gradients in Equation 7 but it is not
clear how their Lipschitz constants differ from Equation 8.10 In
addition, Equation 21 does not account for correlations in the
noise that arise when images are astrometrically rectified.

For that purpose it is necessary to serialize Y, A, and S into
vectors (Y,A,S) with lengths B·N, B·K and K ·N, respectively.
The most convenient vector form Y = (Y1, . . . ,YB) simply con-
catenates the images in B bands. The covariance matrix of Y
has block-diagonal form

ΣY =


Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
. . . 0

0 0 . . . ΣB

 , (22)

with Σb ∈ RN×N denoting the pixel covariance matrix in band b.
We can now rewrite the objective function in a form that uses
vectors for Y and one of A or S, with the other one expressed by
a sparse block matrix (Ā or S̄). The objective function is then

f (A,S) =
1
2

∥∥∥(Y − S̄A)>Σ−1
Y (Y − S̄A)

∥∥∥2
2 ,

f (A,S) =
1
2

∥∥∥(Y − ĀS)>Σ−1
Y (Y − ĀS)

∥∥∥2
2

(23)

which describes an ordinary vector-valued linear inverse prob-
lem. The gradients are

∇A f (A,S) = −S̄>Σ−1
Y (Y − S̄A)

∇S f (A,S) = −Ā>Σ−1
Y (Y − ĀS)

(24)

and the covariance matrices are given by

ΣA = S̄>Σ−1
Y S̄

ΣS = Ā>Σ−1
Y Ā.

(25)

The Lipschitz constants of those gradients, which we need to
calculate λ j in Algorithm 2, are the spectral norms of the co-
variance matrices. Finally, the block matrices that encode A or
S are given by

Ā =


A11IN A21IN . . . AK1IN
A12IN A22IN . . . AK2IN
...

...
. . .

...
A1BIN A2BIN . . . AKBIN

 ∈ RBN×KN (26)

10The two works cited above did not need to compute the respective Lips-
chitz constants as they solved the NMF by multiplicative updates, not proximal
algorithms.
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and

S̄ =


S> 0 . . . 0
0 S> . . . 0
...

...
. . . 0

0 0 . . . S>

 ∈ RBN×BK , (27)

each stacking the blocks row-wise over multiple bands.

2.5. PSF (de-)convolution

Incorporating the convolution with the point spread func-
tion (PSF) into our model is particularly useful for a deblender
because it allows a distinction between overlap that is caused by
the physical extent of the sources involved and the one due to
atmospheric or instrumental blurring of the images. Knowing
the latter reduces the ambiguity caused by the former.

In addition, our model from Equation 1 fits the same mor-
phology to each band, which is only meaningful if the PSF
does not change between bands or the images have been PSF-
homogenized across all bands. Otherwise, the data will exhibit
color variations that our model cannot reproduce, even if the
underlying morphological structure of the astronomical source
is achromatic like e.g. that of a star.

In the vectorized frame we have introduced in Section 2.4
we express the convolution as

P̄ =


P1 0 . . . 0
0 P2 . . . 0
...

...
. . . 0

0 0 . . . PB

 ∈ RBN×BN , (28)

with each of the blocks describing the PSF in a given band as a
linear operator that couples pixels of S. The model can thus be
extended to have the objective functions

f (A,S) =
1
2

∥∥∥(Y − P̄S̄A)>Σ−1
Y (Y − P̄S̄A)

∥∥∥2
2 ,

f (A,S) =
1
2

∥∥∥(Y − P̄ĀS)>Σ−1
Y (Y − P̄ĀS)

∥∥∥2
2

(29)

with gradients

∇A f (A,S) = −
(
P̄S̄

)>
Σ−1

Y (Y − P̄S̄A)

∇S f (A,S) = −
(
P̄Ā

)>
Σ−1

Y (Y − P̄ĀS)
(30)

and covariance matrices

ΣA =
(
P̄S̄

)>
Σ−1

Y P̄S̄

ΣS =
(
P̄Ā

)>
Σ−1

Y P̄Ā,
(31)

from which we can compute prox f and the step sizes λ.
This ansatz with the PSF as a linear operator is only valid

as long as the PSF images and the deconvolved model remain
well sampled.11 Otherwise, the discretized nature of either will

11Internal oversampling is an option to relax this requirement, which we will
investigate in future work.

lead to convolution artifacts, which may result, e.g., in apparent
non-monotonic behavior in the deconvolved morphology even
if the source is perfectly monotonic.

We therefore recommend to construct difference kernels for
each band, P∆,bPmin = Pb, such as to perform a partial deconvo-
lution, resulting in an image with a band-independent PSF Pmin.
Requiring Nyquist-sampling for P∆,b and Pmin suggest that Pmin
should have a width T of about 1

2 minb T (Pb).

2.6. Translations and centering
In blends, peak positions from the initial detection step may

not accurately reflect the true source centers. In fact, the ap-
parent peak positions are often shifted towards neighboring ob-
jects. In addition, the combination of symmetry and monotonic-
ity constraints results in the model being strongly affected by
the assumed location of each source’s center. To avoid spurious
dipole residuals from inaccurate center positions, we introduce
linear translation operators Tx and Ty ∈ RN×N to shift the po-
sition of each source. These operators encode the translation
operation, e.g.

∀i < N : (Sk,i,Sk,i+1)→ ((1 − dx) Sk,i, dx Sk,i+1) (32)

for a shift of component k by an amount dx in the positive hori-
zontal direction, as sparse band-diagonal matrices, i.e. we treat
the translation as a linear interpolation between the pixel and
its relevant neighbors. This is again feasible only if the source
is well sampled, and higher-order interpolation schemes can be
implemented if needed.

We introduce the translation in horizontal and vertical di-
rections into the model via S′ = T̄S, using the block-diagonal
matrix

T̄ =


T1 0 . . . 0
0 T2 . . . 0
...

...
. . . 0

0 0 . . . TK

 ∈ RKN×KN , (33)

where the two-dimensional shift for each component is given
by Tk = Ty,kTx,k. If multiple components belong to the same
source, they have identical Tk. The shifted morphology vector
S′ is then used instead of S in Equation 23, Equation 27, and
Equation 29. This way, all gradients and Lipschitz constants
are correctly computed with the equations given above.

To determine optimal source centers, we create a new set of
T′x,k and T′y,k matrices, each with an additional shift δ of typi-
cally 0.1 pix in either horizontal or vertical direction. We form
two difference images for each component,

Dx,k = Ak ×
(
T′x,k − Tk

)
Sk

Dy,k = Ak ×
(
T′y,k − Tk

)
Sk,

(34)

and combine them into the matrix

D̄ =
(
Dx,1 Dy,1 Dx,2 Dy,2 . . . Dx,K Dy,K

)
. (35)

We then state that the current model residuals are a linear com-
bination of the difference images,

Y − P̄ĀS = D̄∆, (36)
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an ordinary linear inverse problem for the two-dimensional off-
sets ∆, which we solve with a least-squares solver. We perform
this secondary minimization every 10-th iteration, so that the
updates for S have time to adjust to changes in the centers.

3. Applications

3.1. Scene from the HSC UltraDeep survey

We demonstrate the performance of scarlet in deblending
deep ground-based images from HSC. The test case shown in
Figure 1 stems from the UltraDeep COSMOS coadd images of
the HSC public data release (Aihara et al., 2018b). The data
are taken in filters grizy to a 5σ point source depth of 27.4,
27.3, 27.0, 26.4, and 25.6, respectively, with average seeing of
0.74 arcsec or better. This example was selected because of its
complex configuration with 33 detected sources, which span a
wide range of morphologies, sizes, and brightnesses.

We detect the sources in a detection image, defined as the
sum across all bands, using the Python package sep12 (Barbary,
2016), which implements the functionality of SExtractor. The
detection threshold was set at 1.2σ above the background, with
very sensitive deblending parameters DEBLEND THRESH=64 and
DEBLEND CONT=3e-4; these settings were chosen to detect the
majority of sources in this particular example, without over-
deblending the larger galaxies in the image.

3.1.1. Results of scarlet
We specify the CMF model in the simplest form, namely

with single-component sources, which means the model cannot
describe color variations within a galaxy. We initialize the com-
ponent morphologies Sk by constructing symmetric, monotonic
approximations to the region in the detection image around each
identified peak, very similar to the approach the SDSS Photo
deblender employs. The initial SEDs Ak are set to the color
of the data averaged with the spatial weight function Sk. We
perform 200 iterations of Algorithm 2, using inverse per-pixel
variances as weights, but ignoring any noise correlation from
resampling on the coadd image. We also ignore the relatively
small PSF variation between bands in the example, thereby per-
forming the source separation in the convolved frame.

As one can see in the central panel of Figure 1, most fea-
tures of the data are represented well by the scarlet model,
despite the limited flexibility of one-component sources. Fur-
thermore, there are two resolved spiral galaxies (IDs 19 and
22), which in detail violate our assumptions of symmetric and
monotonic behavior. Nonetheless, the residuals in the right
panel of Figure 1 indicate that this simple model can describe
most of the source morphologies. Moreover, the residuals clearly
reveal that our model could be extended by adding several com-
ponents to account for previously undetected localized emis-
sion, either from unrelated sources (such as the red clumps in
the regions of IDs 19 and 25) or distinct stellar populations in
detected sources (as in the centers of IDs 24, 29, and 33).

12https://github.com/kbarbary/sep

We leave the model refinement based on the analysis of the
residuals to future work, and instead compare the deblending
results of scarlet, the HSC-SDSS deblender, and SExtractor
for several sources in Figure 2. Because SExtractor does not
attempt to separate overlapping sources (it merely seeks to find
a suitable boundary between them), we show the multi-band
data for the pixels belonging to the respective objects according
SExtractor’s segmentation map of the detection image.
scarlet performs well on the two large spiral galaxies (IDs

19 and 22), recovering a close approximation of their shape, de-
spite the symmetry and monotonicity constraints. While there
will be cases where those constraints are too restrictive, e.g.
for tightly wound spirals, these two examples demonstrate that
galaxies with a modest amount of internal structure can be mod-
eled well, even with a single component. The combination of
constraints is useful for dense groups of objects, e.g. around
IDs 20 or 6, where e.g. a symmetry constraint alone would not
suffice. ID 6 is well modeled despite being rather faint because
the simultaneous use of all available bands helps determine a
best-fitting morphology, which in turn is used as a matched fil-
ter to determine the SED. However, in IDs 20 or 25 we can see
that this process can fail when undetected sources are present in
the vicinity of model components. The optimization algorithm
of scarletwill reduce the residuals by connecting to undetected
emission via a flat “bridge”, which is the only option available
under the monotonicity constraint. If an undetected source has
a different SED, a single-component source has no other option
than to adopt the flux-weighted mean SED, which is clearly vis-
ible in ID 25. An `0 sparsity penalty (cf. Section 2.3.3) could
suppress those bridges, however its use is problematic because
it would bias low the recovery of total fluxes.

3.1.2. Comparison to other deblenders
SExtractor makes no such structural assumptions, but the

limitations of the “cookie cutter” approach clearly show with
the large spirals IDs 19 and 22, as well as their neighbors, e.g.
ID 20. As a result, most objects are too compact, which will
lead to low biases on total fluxes and sizes. SExtractor is also
prone to merging different sources together, even when they are
discontinuous in the segmentation map (IDs 19, 22, 25).

The HSC-SDSS deblender performs surprisingly badly on
ID 19 and, by extension, on its neighbors. Because the pixel
fluxes are exactly preserved, a failure in one source has strong
effects on others, e.g. IDs 20 and 25 pick up the flux from the
outskirts of 19. However, the addition of monotonicity, which
was not present in the SDSS Photo implementation by Lupton
(in prep.), helped in the three-in-a-row case of ID 6.

As a summary, we find scarlet to perform well on a com-
plex blended scene of deep HSC imaging, despite its simplify-
ing assumptions of single-component sources and the rigidity
of the symmetry and monotonicity constraints. It simultane-
ously models all sources and is automatically consistent across
all bands. A conceptual limitation remains, namely the sensitiv-
ity to undetected sources or multiple stellar populations within
detected sources, which could be mitigated by adding or in-
creasing penalties such as a strong `0 sparsity that restricts the
support of each component to a minimum number of pixels.
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Figure 2: Deblender comparison for several sources (one per row) from Figure 1. 1st column: HSC grizy coadd data. 2nd column: The corresponding component
of the scarlet model. 3rd column: Data from the 1st column, restricted to the object’s pixels in the SExtractor segmentation map of the detection image. 4th
column: HSC-SDSS deblender result for the object, run independently on each band.10



On the other hand, an iterative sequence that adds components
at the location of significant and coherently colored residuals
appears viable and could substantially augment traditional de-
tection methods.

3.2. Simulations

As the problem of deblending astronomical scenes is inter-
related with detecting all relevant sources, we seek to decouple
these two tasks with the help of simulations where we know the
number and location of each source. The simulations also allow
us to determine the accuracy of the recovered source properties,
namely total fluxes, SEDs, and morphologies. We will first test
how well the assumptions of monotonicity and symmetry allow
us to recover complex morphologies of isolated sources (Sec-
tion 3.2.1) and then how that recovery is affected when multiple
overlapping objects are present in each scene (Section 3.2.2).
Both sets of simulations are created with the galsim software
package (Rowe et al., 2015).

As metrics to quantify the fidelity of the source modeling
and deblending, we determine the fluxes, SEDs, and per-pixel
morphologies of deblender results. For the total flux, which for
scarlet is given by

∫
d2x Sk, we simply compute the fractional

error compared to the input model. For SEDs and morphologies
we compute the correlation coefficient between the true and the
observed vectors v,

ξv =
vtrue · vobs

√
vtrue · vtrue ·

√
vobs · vobs

. (37)

The coefficients ξAk and ξSk measure how well a deblender re-
covers colors and shapes (including intensity) of component k,
respectively. We consider these fidelity measures as a func-
tion of true source flux and source “blendedness” (Bosch et al.,
2018)

β = 1 −
Sk · Sk

Sall · Sk
, (38)

where Sall =
∑

k Sk, expecting that good results will be harder
to achieve for faint sources in very crowded areas.

3.2.1. Individual galaxies
We start by investigating how well scarlet can reproduce

realistic galaxy morphologies. We use a set of galaxies from the
COSMOS HST sample described in Mandelbaum et al. (2012)
that are available with galsim13. From the full sample of 87,000
galaxies with i < 25.2, we further select those with total fluxes
between 300 and 2,000 counts that pass most stringent “marginal”
cuts. The bright cutoff was chose to remove galaxies with vis-
ible blending: many of the brightest galaxies have faint back-
ground galaxies or foreground stars in their wings. As we seek
to test the recovery of individual sources here, those interlopers
are contaminants that reduce the correlation measure in Equa-
tion 37. They could easily be fit with scarlet if their exis-
tence and positions were known, but for the simulations here

13https://github.com/GalSim-developers/GalSim/wiki/
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Figure 3: An example galaxy from the COSMOS HST dataset in galsim. Top
left: The “truth” image, defined by an original HST image from which we re-
moved the noise in the galaxy outskirts. Top right: The difference between the
original HST image and the “truth”. Bottom left: The model generated by scar-
let with symmetry and monotonicity constraints. Bottom right: The residuals
(truth −model) reveal spiral structure that is missing in the scarletmodel. The
panels on the left use a sinh−1 scaling.

we want to assume that we know the position of every indi-
vidual source. The lower flux cutoff was imposed to eliminate
faint sources, whose outskirts are dominated by correlated noise
from the original HST observations. To further reduce the effect
of correlated noise, we estimate the noise level over the postage
stamp and subtract the corresponding value from the entire im-
age, setting all negative pixel values to zero. While this proce-
dure is likely to cut off some flux from the wings of the galaxy,
the bulk of the galaxy and especially its internal structure is
preserved. The remaining sample comprises 799 galaxies. An
example galaxy from this procedure is shown in Figure 3.

Figure 4: Morphology correlation coefficient (Equation 37) of scarlet models
for 799 isolated galaxies from the COSMOS HST sample in galsim.
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We run scarlet on single-band images of all 799 galaxies.
The pixel resolution is set to a typical ground-based value of
0.2 arcsec; no noise is added to the image. We show the re-
sulting model and the residuals for the example galaxy in the
bottom panels of Figure 3. For reference, its total flux error
is 0.08%, its morphology correlation coefficient ξS = 0.999.
The RMS of the total flux error for the entire sample is 0.39%,
which increases for fainter sources, suggesting that some corre-
lated noise still made it into the input images and is suppressed
by the monotonicity constraint. The morphology correlation
ξS is shown as a cumulative distribution function in Figure 4.
These results demonstrate that for realistic galaxies, scarlet re-
covers morphologies with a very strong correlation to the input
morphologies despite the constraints of symmetry and mono-
tonicity; consequently, the estimation of total fluxes is also ex-
cellent.

3.2.2. Blended scenes
We now create a set of 10,000 blended scenes in the LSST

filters ugrizy, with widths and heights varying between 30 and
70 pixels, comprising on average a mix of 20% stars and 80%
galaxies, with a common PSF across all bands. The stellar
sources have SEDs taken from the Pickles (1998) templates for
O5V, B5V, A5V, F5V, K5V, and M5V stars, and each stellar
morphology is defined as a 2D Gaussian with σ = 10−9 pix that
is convolved with the PSF in each band. Galaxy sources have
SEDs based on four empirical (Coleman et al., 1980, CWW)
templates available in galsim, randomly perturbed to generate a
total of 25 different galaxy SED templates. Their redshifts are
randomly chosen between 0 and 2.1. For the galaxy morpholo-
gies we use the same 799 galaxies selected in Section 3.2.1.
All sources are inserted into the scenes with a power-law distri-
bution in radius from the center, resulting in strongly crowded
blends in the middle of the images. Uncorrelated Poisson noise
is added to the images, using a sky background brightness at the
mean noise level of the HST images, so that we can largely hide
the truncation of the input galaxy morphologies (cf. Figure 3).

We run scarlet and the current HSC-SDSS deblender and
separate the results for stars and galaxies assuming that larger
average brightness and more compact shape should make stars
easier to deblend than galaxies. Indeed, we find in Figure 5 that
total flux errors are smaller for stars than for galaxies and that
scarlet substantially outperforms the HSC-SDSS deblender.
These two trends continue with the correlation coefficients of
SEDs in Figure 6 and of morphologies in Figure 7. We un-
derstand the remarkable difference between these two deblend-
ing strategies, which have very similar constraints on the source
morphologies, as a result of fitting a joint model across all bands
(scarlet) or independent models for each band (HSC-SDSS).
Our strategy is superior in these test cases because we combine
images of all bands, resulting in a morphology that is driven by
the band with the highest significance, which is in turn used as
an optimal filter to determine the source SED.

We emphasize that these results are achieved with single-
component, symmetric, and monotonic source models, even
though the true morphologies in the simulations exhibit more
complex structure. There will be cases in which those con-
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Figure 5: Comparison of the relative error of total fluxes in the g between
scarlet (top) and the HSC-SDSS deblender (bottom), for galaxies (left) and
stars (right). For reference, the red horizontal lines show 5% relative errors. We
only show the results of the r-band as the other bands look qualitatively similar.

straints lead to substantial errors, but we believe that they are
now demonstrably justified as powerful default configurations
for deblending in ground-based wide-field surveys.

We finally note that the runtime of scarlet in our tests is
about 10 ms per band and source, driven almost entirely by the
cost to evaluate the likelihood gradients in Equation 30. The
computational cost increases substantially if the PSF convolu-
tion cannot be expressed efficiently. While slower than e.g. the
HSC-SDSS deblender, scarlet only has to be run once over
all images and directly yields measurements of flux, SED, and
morphology of the sources. We fully expect source extraction
with scarlet to be a computationally expensive but still feasible
task for deep optical surveys.

3.3. Extended Emission Line Regions of AGN

To further demonstrate the capabilities of scarlet as a flex-
ible component separation framework, we analyze HSC Wide
coadd images in grizy bands of galaxies with extended emission-
line regions (EELRs) created by active galactic nuclei (AGN).
Resulting from AGN radiation on inhomogeneous inter-stellar
medium, the morphology of EELR is often complex, asym-
metric, and non-monotonic. The strong emission lines, e.g.,
[OIII]λ5007, emitted can be detected and resolved by broad-
band imaging as components that may spatially overlap with
but have colors distinct from their host galaxies (e.g., Lintott
et al., 2009; Keel et al., 2012).

The particular example shown in Figure 8, SDSS J023106-
034513, is taken from the EELR sample of Sun et al. (2018),
who selected EELR candidates from spectroscopically identi-
fied type 2 obscured AGNs. With a high luminosity of Lbol =

1045.7 erg s−1, this AGN creates extended [OIII]λ5007 emission
with a diameter of 60 kpc that is captured in the HSC i-band
image, see Figure 8.

We seek to separate the EELR from its host galaxy with
scarlet. We first detect all sources in the image, and then as-
sign them to either host, EELR, or one of 3 likely unrelated
interlopers. We constrain the morphology of the interlopers
with our default combination of non-negativity, monotonicity
and symmetry. The host galaxy does not appear symmetric, so
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Figure 6: Correlation, as defined by Equation 37, between true SEDs and the
SEDs from the HSC-SDSS deblender or scarlet as a function of true source
flux (top four panels) and blendedness (Equation 38, bottom four panels.)

we remove that constraint14, while the EELR has no constraints
other than non-negativity.

To compensate for the weakening of morphological con-
straints, we can utilize our knowledge of the EELR broadband
SED based on the emission lines in the observed SDSS spec-
trum. Similarly, by assuming that the host galaxy is responsi-
ble for the continuum spectrum without emission lines, we can
also predict its broadband SED. The proximal operator for Ak is
thus simply a projection onto the precomputed SEDs of EELR
or host and mute for any of the interlopers:

proxAGN(Ak) =


AEELR if k = kEELR

AHost if k = kHost

Ak else.
(39)

We use inverse per-pixel variances as weights and match the ob-
served PSFs between bands by deconvolving to an effective res-
olution of 0.35 arcsec, using the formalism of Section 2.5. We
show the converged, convolved scarlet model in the second
panel of Figure 8 and the partially deconvolved EELR com-
ponent in the third panel. For comparison, in the forth panel,
we also show the EELR image obtained via image continuum
subtraction from Sun et al. (2018). In this approach, to iso-

14In experiments, we found that the host is better modeled by two co-centered
components, similar to a bulge-disk model.

0.0 0.2 0.4 0.6 0.8 1.0
log10(true flux)

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

0.7

0.8

0.9

1.0

1.1
scarlet galaxies scarlet stars

2.0 2.5 3.0 3.5 4.0

0.7

0.8

0.9

1.0

1.1
HSC-SDSS galaxies

2.0 2.5 3.0 3.5 4.0 4.5 5.0

HSC-SDSS stars

100

101

102

103

Nu
m

be
r o

f S
ou

rc
es

Morphology Correlation

0.0 0.2 0.4 0.6 0.8 1.0
Blendedness

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

0.7

0.8

0.9

1.0

1.1
scarlet galaxies scarlet stars

0.0 0.2 0.4 0.6 0.8

0.7

0.8

0.9

1.0

1.1
HSC-SDSS galaxies

0.0 0.1 0.2 0.3 0.4 0.5 0.6

HSC-SDSS stars

100

101

102

103

Nu
m

be
r o

f S
ou

rc
es

Morphology Correlation

Figure 7: Same as Figure 6 for the correlation between the true source mor-
phology and the morphologies from the HSC-SDSS deblender or scarlet. For
HSC-SDSS, the morphology is taken from the g-band; other bands look similar.

late the EELR signal, the galaxy continuum in the i-band is re-
moved by subtracting the (scaled) z-band image, which contains
only the continuum but not line emissions. We can see that the
scarlet model of the EELR strongly resembles the continuum-
subtraction result, while revealing smaller spatial features of the
EELR. A more detailed application of scarlet to EELR extrac-
tion is planned for future work.

4. Summary and Outlook

The employment of multi-channel information is long known
to aid source separation schemes. It was therefore expected that
multi-band imaging should be beneficial in cases when multi-
ple sources overlap in a celestial scene. To exploit the availabil-
ity of multi-band imaging from modern sky surveys, we have
developed the source separation framework scarlet. It uses
a matrix factorization scheme, in which one matrix factor de-
scribes the amplitude of all components in each band and the
other factor describes their spatial shape. We use the proxi-
mal optimization method bSDMM presented by Moolekamp &
Melchior (2018) to allow for an arbitrary number of constraints
on each matrix factor. The astrophysical interpretation of this
model is that the scene is composed of a number of components
that each describe one star or distinct stellar population. Galax-
ies can be modeled as several such components to characterize
e.g. bulge and disc-like features.
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Data SCARLET EELR Band subtraction

Figure 8: 1st panel: False-color image of grizy coadd images of SDSSJ023106-034513 from the HSC Wide data release, shown with an arcsinh stretch. 2nd panel:
Convolved scarletmodel of the scene with a two-component monotonic source for the host galaxy, a free-form source for the EELR, and monotonic and symmetric
sources for other detections in the scene. 3rd panel: Partially deconvolved EELR component. 4th panel: Result of the band subtraction i − z from Sun et al. (2018),
which subtracts the galactic continuum to isolates the EELR emission.

To aid the source separation further, especially in crowded
regions with little variation in source colors (such as galaxy
cluster cores), we constrain the component morphologies to be
monotonic and/or symmetric with respect to the sources peak
position. If available, constraints on the SED of the sources,
e.g. from stellar SED libraries or high-resolution spectra, are
beneficial as well.

We have derived the analytical treatment of correlated pixel
noise and of band-dependent PSF convolution, rendering scar-
let capable of working on coadd images with variable seeing
conditions. In essence, it performs a PSF-matched photometry
measurement with an optimally chosen weight function given
by the signal-to-noise-weighted mean morphology in all avail-
able bands. Applied to an example scene from the HSC Ultra-
Deep survey, we find scarlet to robustly recover all detected
sources, even if they exhibit complex morphologies. For de-
tailed analyses of extended galaxies one can conceive of addi-
tional constraints, such as the Fourier mode extension of Galfit
(Peng et al., 2010).

We show with a set of dedicated simulations comprised of
stars and realistic galaxy morphologies that scarlet yields an
accurate recovery of source fluxes, SEDs, and morphologies,
even for prominent levels of blendedness. In our tests it clearly
outperforms the HSC-SDSS deblender in each of these mea-
surements and is especially powerful for stars and marginally
resolved as well as faint sources.

Because of its non-parametric nature, scarlet exhibits a set
of inherent advantages and drawbacks, which we summarize in
Table 1. In addition, due to its flexibility it is sensitive to un-
detected sources or additional components of detected sources.
On the other hand, the inspection of the fit residuals appears to
clearly reveal their presence. We therefore envision a scheme in
which components are added at the location of significant and
coherently colored residuals. A decision whether any newly
added component is part of a previously detected source or in-
dependent of all other sources will require a post-processing
step that encodes an interpretation based on the nature of the
astronomical scene.

When run in this fashion scarlet breaks a common model

of data processing in optical astronomy that consists of three
distinct stages: detection, deblending, and characterization. If
components are added from an analysis of the residuals and the
models are used to infer source properties, it essentially covers
aspects of all three stages. While doing so, it makes assump-
tions about the SEDs and morphologies of the sources as well
as the noise and the PSFs in the observations, which need to
be valid to produce reliable results. It will therefore be neces-
sary to assess the accuracy of scarlet models for specific sci-
ence cases. To facilitate inference directly on scarlet sources,
we intend to provide an error-estimation scheme, which ac-
curately captures component degeneracies and effects of non-
differentiable constraints.

We have intentionally developed scarlet such that it can
utilize any constraint or prior that can be expressed as a proxi-
mal operator without having to change the algorithm itself, thus
rendering it suitable to a wide range of source separation prob-
lems in image data. We demonstrated this flexibility with an
AGN jet–host galaxy separation in this work and with a hy-
perspectral unmixing task in Moolekamp & Melchior (2018).
It is inherent to the matrix factorization approach that scarlet
should work well in applications where high-quality informa-
tion on the spatial distribution of sources is to be combined with
high-quality information on their spectra. An example is the
combination of a single high-resolution image from a space-
born telescope, such as HST or the future WFIRST (Spergel
et al., 2015), with multi-band imaging of lower spatial reso-
lution from a ground-based telescope. We will pursue this re-
search direction in forthcoming works.
scarlet is implemented in Python with C++ extensions, ac-

cessible through pybind11, and is available at https://github.
com/fred3m/scarlet. Its interface is highly modular and
should be easily extendible to different applications. Contribu-
tions and requests from the astronomical community are highly
encouraged.
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Table 1: Main advantages and drawbacks of scarlet.

Feature Advantage Disadvantage
Matrix Factorization Low-rank representation of celestial scenes Not suited for correlated changes of SED and morphology

Non-parametric model Arbitrary morphologies and SEDs Requires critical sampling
No analytic PSF convolution

Proximal gradient optimization Wide range of priors and penalties No analytic error propagation
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