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It is common to express cosmological measurements in units of h−1Mpc. Here, we review some
of the complications that originate from this practice. A crucial problem caused by these units is
related to the normalization of the matter power spectrum, which is commonly characterized in
terms of the linear-theory rms mass fluctuation in spheres of radius 8h−1Mpc, σ8. This parameter
does not correctly capture the impact of h on the amplitude of density fluctuations. We show that
the use of σ8 has caused critical misconceptions for both the so-called σ8 tension regarding the
consistency between low-redshift probes and cosmic microwave background data, and the way in
which growth-rate estimates inferred from redshift-space distortions are commonly expressed. We
propose to abandon the use of h−1Mpc units in cosmology and to characterize the amplitude of the
matter power spectrum in terms of σ12, defined as the mass fluctuation in spheres of radius 12 Mpc,
whose value is similar to the standard σ8 for h ∼ 0.67.

Introduction.— Common statistics used to analyse
the large-scale structure of the Universe are based on
observable quantities such as galaxy angular positions,
redshifts, and shapes. Relating these quantities to den-
sity fluctuations on a given physical scale requires the
assumption of a fiducial cosmology. To avoid adopting
a specific value of the Hubble parameter, it is common
practice to express all scales in units of h−1Mpc, where h
determines the present-day value of the Hubble param-
eter as H0 = 100h km s−1Mpc−1. At low redshift, the
comoving distance χ(z), given by

χ(z) =

∫ z

0

cdz′

H(z′)
, (1)

can be approximated as

χ(z) ≈ c

H0
z. (2)

Then, using h−1Mpc units effectively yields a distance
independent of any assumption of the fiducial cosmology.
This approach was applied to the analysis of the first
galaxy redshift surveys [1, 2], which probed only small
volumes. However, this practice has continued until the
analysis of present-day galaxy surveys such as the Baryon
Oscillation Spectroscopic Survey (BOSS) [3], which cover
much larger volumes and where the use of the distance –
redshift relation of Eq. (1) requires the assumption of a
full set of fiducial cosmological parameters.

∗arielsan@mpe.mpg.de
†The title of this letter is a reference to the provocative speech

given by Nobel laureate Gabriel García Marquez during the First
International Congress of the Spanish Language, where he made
a plea to simplify Spanish orthography by, among other things,
getting rid of the soundless letter h using the sentence “enterremos
las haches rupestres”.

As cosmological observations are expressed in h−1Mpc
units, theoretical predictions also follow the same ap-
proach. These units obscure the true dependence of the
matter power spectrum, P (k), on h. Moreover, the am-
plitude of P (k) is often characterized in terms of the rms
linear perturbation theory variance in spheres of radius
r = 8h−1 Mpc, commonly denoted as σ8. For models
with different values of h, this corresponds to different
reference scales in Mpc. Furthermore, σ8 is often con-
strained by cosmological data that provide different pos-
terior distributions on h, which means that the inferred
values probe the amplitude of density fluctuations on dif-
ferent scales. In the following sections we will discuss the
implications and misconceptions related with the use of
h−1Mpc units, and how they can be avoided.
Impact of the fiducial cosmology.— Three-dimensional

galaxy clustering measurements depend on the particular
cosmology used to transform the observed redshifts into
comoving distances. Any difference between this fidu-
cial cosmology and the true underlying one gives rise to
the so-called Alcock-Paczynski (AP) distortions [4]. This
geometric effect distorts the inferred components paral-
lel and perpendicular to the line-of-sight, s‖ and s⊥, of
the total separation vector s between any two galaxies as
[5, 6]

s‖ = q‖s
′
‖, (3)

s⊥ = q⊥s
′
⊥, (4)

where the primes denote the quantities in the fiducial
cosmology and the scaling factors are given by

q‖ =
H ′(zm)

H(zm)
, (5)

q⊥ =
DM(zm)

D′M(zm)
, (6)

where H(z) is the Hubble parameter, DM(z) is the co-
moving angular diameter distance, and zm is the effective
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FIG. 1: Panel a): linear matter power spectra at z = 0 of three ΛCDM models defined by identical cosmological parameters
with the exception of h, expressed in h−1Mpc units. Panel b): the same power spectra of panel a shown in units of Mpc. Panel
c): the power spectra of the same models of panel b but with their values of As adapted to produce the same value of σ12.
Panel d): non-linear matter power spectra corresponding to the same models of panel c.

redshift of the galaxy sample. If the clustering measure-
ments are expressed in h−1Mpc , the quantities appearing
in Eqs. (5) and (6) must also be computed in these units.

AP distortions are exploited as a source of cosmologi-
cal information, most notably by means of measurements
of the baryon acoustic oscillation (BAO) feature [7–12].
These measurements are based on the use of the sound
horizon scale at the drag redshift, rd, as a standard ruler.
The information recovered from these measurements is
often expressed in terms of the BAO shift parameters

α‖ =
H ′(zm)

H(zm)

r′d
rd
, (7)

α⊥ =
DM(zm)

D′M(zm)

r′d
rd
. (8)

If the values ofH(z) and DM(z) are expressed in h−1Mpc
units, the sound horizon in the true and fiducial cosmol-
ogy must be given in these units as well.

As the fiducial sound horizon r′d can be predicted in
Mpc as a function of the physical baryon and matter

densities, ωb and ωc, its mapping into h−1Mpc requires
the assumption of a value of h. Avoiding this assumption
was the original motivation of using h−1Mpc units. As
the procedure required to account for the impact of the
fiducial cosmology on clustering measurements is essen-
tially the same whether they are expressed in h−1Mpc
units or if a value of h is explicitly assumed, there is no
advantage in using the traditional units with regard to
BAO analyses.
The normalization of the power spectrum.— We now

focus on the complications associated with the use of
h−1Mpc units when computing model predictions for
clustering measurements. Panel a of Fig. 1 shows the
linear matter power spectra at z = 0 of three different
ΛCDM models expressed in h−1Mpc units, computed us-
ing CAMB [13]. These power spectra have been obtained
by fixing all physical density parameters, ωi, as well as
the amplitude and spectral index of the scalar mode, As

and ns, and varying only the value of h. Panel b of Fig. 1
shows the same power spectra in units of Mpc, without
introducing the traditional h factors. The power spectra
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FIG. 2: Two-dimensional 68% and 95% constraints recovered from Planck (green), the 3 × 2pt analysis of DES (blue), and
BOSS (orange) under the assumption of a ΛCDM cosmology on the parameters Ωm – σ8 (panel a), Ωm – S8 = σ8 (Ωm/0.3)0.5

(panel b), ωm – σ12 (panel c), and ωm – S12 = σ12 (ωm/0.14)0.4 (panel d).

of these models have the same shape, with the BAO fea-
ture appearing at the same scales, and differ only in their
amplitude. Expressing these power spectra in h−1Mpc
units introduces a spurious dependency on the value of
h, which actually only affects the overall clustering am-
plitude when they are expressed in Mpc.

For a ΛCDM universe, the amplitude of the power
spectrum is controlled by both h and As. The joint effect
of the two parameters is usually described in terms the
linear perturbation theory variance in spheres of radius
r = 8h−1 Mpc, σ8. A problem with this quantity is that
8h−1 Mpc corresponds to a different scale for models with
different values of h. Normalizing the power spectra of
Fig. 1 to the same value of σ8 would actually aggravate
the amplitude mismatch.

A better choice to describe the degenerate effect of h
and As is to normalize the power spectrum in terms of
the mass variance at a given scale in Mpc. For simplicity,
we propose to use σ12, defined as the rms linear theory
variance at r = 12 Mpc. For models with h ' 0.67 as
suggested by current CMB observations, 8h−1 Mpc '
12 Mpc and σ12 has a similar value to the standard σ8.
However, these parameters differ for other values of h.
Panel c of Fig. 1 shows the power spectra of the same
models of panel b with their values of As modified to
produce the same value of σ12, which are now identical.
This shows that the perfect degeneracy between h and
As is more naturally described in terms of σ12 than the
standard σ8.

Panel d of Fig. 1 shows the predictions for the non-
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linear P (k) of the same models shown in panel c, com-
puted using the halofit formalism [14]. The observed
agreement, with only differences of a few percent at high
k, shows that σ12 is a more adequate parameter to char-
acterize the non-linear evolution of P (k) than σ8.
Revising the σ8 tension.— It is common to include σ8

in the lists of parameters that are constrained by cosmo-
logical observations. These constraints have been the fo-
cus of significant attention in recent years as the value of
σ8 preferred by Planck CMB data [15] under the assump-
tion of a ΛCDM universe is higher than the estimates de-
rived from all recent weak lensing (WL) datasets [16–19]
and the abundance of galaxy clusters [20]. Recent ana-
lyses of anisotropic clustering measurements from BOSS
have found similar differences with the CMB predictions
[21–23]. These discrepancies, which have been dubbed
the “σ8 tension”, are illustrated in panel a of Fig. 2,
which shows the constraints on Ωm and σ8 recovered from
the final Planck CMB data [15], the auto- and cross-
correlations between the cosmic shear and galaxy posi-
tions (the so-called 3 × 2pt analysis) from the Dark En-
ergy Survey (DES) [24], and the galaxy clustering mea-
surements from BOSS [21, 25]. These results assume a
ΛCDM cosmology with the same wide uniform priors as
in the analysis of [21]. Panel b of Fig. 2 shows these con-
straints expressed in terms of S8 = σ8 (Ωm/0.3)

0.5, which
is often used to describe WL constraints. For the same
values of Ωm preferred by Planck, the low-redshift data
prefer lower values of S8 than the CMB constraints.

As discussed before, a drawback of using σ8 to char-
acterize the amplitude of the power spectrum is its de-
pendence on h. As each dataset shown in Fig. 2 pro-
vides different constraints on h, the scales correspond-
ing to 8h−1Mpc are also different. While Planck gives
8h−1Mpc = (11.8± 0.21) Mpc, the low-redshift data of
BOSS and DES imply 8h−1Mpc = 11.38+0.77

−0.71 Mpc and
8h−1Mpc = 9.3+2.2

−1.3 Mpc, respectively. Although these
results are consistent within 1σ, their difference implies
that the values of σ8 recovered from these data cannot
be directly compared as they characterize the amplitude
of density fluctuations on different scales.

These issues can be avoided by using as a reference
the value of σ12, which is independent of the constraints
on h obtained from a particular dataset. Panel c of
Fig. 2 shows the constraints in the ωm – σ12 plane re-
covered from the same datasets. We use the physical
density ωm instead of the density parameter Ωm as the
former is the most relevant quantity to characterize the
shape of P (k). When expressed in terms of σ12, the
constraints inferred from DES and Planck are in agree-
ment. BOSS data prefer lower values of σ12. These
constraints are largely driven by a degeneracy between
this parameter and the scalar spectral index ns, which
is not well constrained by BOSS data alone. Panel d
of Fig. 2 shows these results in terms of the parame-
ter combination S12 = σ12 (ωm/0.14)

0.4, which matches
the degeneracy between ωm and σ12 recovered from DES

data. When the amplitude of P (k) is measured at a scale
in Mpc, low and high-redshift data show consistent con-
straints. Planck and DES imply S12 = 0.815 ± 0.026
and S12 = 0.812+0.068

−0.077 respectively, while BOSS gives
S12 = 0.718+0.094

−0.090, which are all consistent within 1σ.
A detailed assessment of the consistency between

Planck and low-redshift data, including other WL sur-
veys or the abundance of galaxy clusters, is out of the
scope of this letter. However, such studies should be
based on σ12 as an indicator of the amplitude of den-
sity fluctuations.
The growth rate of cosmic structures.— The analysis

of redshift-space distortions (RSD) based on anisotropic
two-point clustering measurements is considered as one
of the most robust tools to constrain the growth rate of
structures across cosmic time [26]. In linear perturba-
tion theory, the two-dimensional galaxy power spectrum,
Pg(k, µ, z), is related to the real-space matter power spec-
trum by [27]

Pg(k, µ, z) =
(
b(z) + f(z)µ2

)2
P (k, z). (9)

where µ represents the cosine of the angle between k and
the line-of-sight direction, b(z) is the galaxy bias factor
and f(z) is the linear growth rate parameter. Eq (9) can
be written as

Pg(k, µ, z) =
(
bσ8(z) + fσ8(z)µ2

)2 P (k, z)

σ2
8(z)

. (10)

If σ2
8(z) described the amplitude of the power spectrum,

the ratio P (k, z)/σ2
8(z) would only depend on the param-

eters that control its shape. In this case, the anisotropies
in Pg(k, µ, z) would only depend on the combination
fσ8(z), which is the quantity in which the results of RSD
analyses are expressed. However, the ratio P (k, z)/σ2

8(z)
depends on the actual value of h. We can then expect to
obtain different results depending on the assumed value
of h or when this parameter is marginalized over.

In most RSD studies, anisotropic clustering measure-
ments are used to constrain the values of fσ8(z) and the
BAO shift parameters of Eqs. (7) and (8), together with
additional nuisance parameters, while the cosmological
parameters that determine the shape and amplitude of
the matter P (k), including h, are kept fixed. To test
this approach we used linear perturbation theory to ob-
tain predictions of the Legendre multipoles P`=0,2,4(k)
of a synthetic galaxy sample roughly matching the vol-
ume, bias, and number density of the final BOSS CMASS
sample [28] and used a Gaussian prediction for their cor-
responding covariance matrix [29]. We then used these
data to constrain the combinations bσ8(z) and fσ8(z), as
well as the BAO shift parameters.

Panel a of Fig. 3 shows the constraints in the bσ8(z)
– fσ8(z) plane obtained when both As and h are kept
fixed (orange), which corresponds to the standard RSD
analysis, when As is varied while h is kept fixed (green),
and the more general case in which both As and h are
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FIG. 3: Panel a): constraints on the parameters bσ8(z) and fσ8(z) derived from synthetic Legendre multipoles P`=0,2,4(k)
corresponding to a galaxy sample matching the volume, bias, and number density of the BOSS CMASS sample. The contours
correspond to the standard analysis in which As and h are kept fixed (orange), when As is varied and h is fixed (green), and
when both parameters are varied (blue). Panel b): same constraints as panel a but expressed in terms of bσ12(z) and fσ12(z).

allowed to vary (blue). The dashed lines correspond to
the true values of these parameters. When only As is
varied, the constraints follow the expected degeneracies
defined by constant values of bσ8(z) and fσ8(z), leading
to identical results to the ones obtained when it is fixed.
However, when h is also varied, their degenerate effect on
the amplitude of P (k) is not fully captured by σ8(z) and
the obtained constraints deviate significantly from the
results recovered in the standard case. This shows that
RSD data can only constrain fσ8(z) when a fixed value
of h is assumed. Without this strong assumption, the
information recovered from RSD fits is not well described
as a measurement of fσ8(z).

Panel b of Fig. 3 shows the same constraints as in panel
a, but expressed in terms of bσ12(z) and fσ12(z). In
terms of these variables, the results are the same irre-
spective of whether As or h are kept fixed or marginalized
over. This shows that the combination fσ12(z) provides
a more correct description of the information retrieved
from the standard RSD analyses. Note that, although
for h ' 0.67 the numerical values of fσ12(z) and fσ8(z)
are similar, their cosmological implications are different.
Conclusions.— In this letter we have reviewed a num-

ber of drawbacks associated with the use of h−1Mpc units
in cosmology. An important problem due these units is
related to the normalization of the matter power spec-
trum in terms of the standard σ8. This parameter does
not correctly capture the impact of h on the amplitude
of P (k), which is better described in terms of a reference
scale in Mpc. A convenient choice is 12 Mpc, which re-
sults in a mass variance σ12 with a similar value to the
standard σ8 for h ∼ 0.67.

We have shown that the agreement between low- and
high-redshift data should be quantified in terms of σ12,
which is independent of the constraints on h provided by
any given dataset. The results of standard RSD analyses
are more correctly expressed in terms of fσ12(z), which
changes the cosmological implications of most growth-
rate measurements obtained so far. In the coming years,
new large-volume surveys [30, 31] will challenge our abil-
ity to obtain robust cosmological constraints. The argu-
ments presented here indicate that we should abandon
the use of the traditional h−1Mpc units in the analysis
of these new high-quality datasets, and to replace σ8 by
the analogous σ12 as a better quantity to characterize the
amplitude of density fluctuations.
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