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ABSTRACT

I describe a Bayesian method to account for measurement errors in linear regression of astronomical data. The method
allows for heteroscedastic and possibly correlated measurement errors and inftinsic scatter in the regression relationship.
The method is based on deriving a likelihood function for the measured data, and I focus on the case when the intrinsic dis-
tribution of the independent variables can be approximated using a mixture of Gaussian functions. I generalize the method
to incorporate multiple independent variables, nondetections, and selection effects (e.g., Malmquist bias). A Gibbs sam-
pler is described for simulating random draws from the probability distribution of the parameters, given the observed data.
T'use simulation to compare the method with other common estimators. The simulations illustrate that the Gaussian mixture
model outperforms other common estimators and can effectively give constraints on the regression parameters, even
when the measurement errors dominate the observed scatter, source detection fraction is low, or the intrinsic distribu-
tion'of the independent variables isnotamixture of Gaussianfunctions. I conclude by using this method to fit the X-ray
spectral slope as a function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I confirm the correlation
seen by other authors between the radio-quiet quasar X-ray spectral slope and the Eddington ratio, where the X-ray
spectral slope softens as the Eddington ratio increases. IDL routines are made available for performing the regression.

SOME ASPECTS OF MEASUREMENT ERRORVIN' EINEARTREGRESSION OF ASTRONOMICAL DATA

Subject headings: methods: data analysis — methods: numerical — methods: statistical

1. INTRODUCTION

Linear regression is one of the most common statistical tech-
niques used in astronomical data analysjs~In general, lin€ar re-
gression in astronomy d§ characterized by ntrinsic scatter about
the regression line andshieasurement errors in both the indepen-
dent and dependent variables. The source of intrinsic scatter is
variations in the physical properties of astronomical sources that
are not completely captured by the variables included in the re-
gression: It is important to correctly account for both measurement
error and intrinsic scatter, as both aspects can have a nonnegligible
effect on the regression results. In particular, ignoring the intrinsic
scatter and weighting the data points solely by the measurement
errors can result in the higher precision measurements being given
disproportionate influence on the regression results. Furthermore,
when the independent variable is measured with error, the ordi-
nary least-squares (OLS) estimate of the regression slope is biased
toward'zero (e.g., Fuller 1987; Akritas & Bershady 1996; Fox
1997). When there are multiple independent variables, measure-
ment error can have an even stronger and more unpredictable effect
(Fox 1997). In addition, the existence of nondetections, referred
to as “censored data,” in the data set will result in additional com-
plications'(e:g:; Isobe et'al: 1986). Therefore, when performing
regression, it is essential to correctly account for the measurement
errors and intrinsic scatter in order to ensure that the data analysis
and, thus, the scientific conclusions based on it are trustworthy.

Many methods have been proposed for performing linear re-
gression when intrinsic scatter is present and both variables are
measured with error. These include methods that correct the ob-
served moments of the data (e.g., Fuller 1987; Akritas & Bershady
1996; Freedman et al. 2004), minimize an “effective” y? statistic
(e.g., Clutton-Brock 1967; Barker & Diana 1974; Press et al.
1992; Tremaine et al. 2002), and assume a probability distribution
for the true independent variable values (so-called structural equa-
tion models; e.g., Schafer 1987, 2001; Roy & Banerjee 2006);
Bayesian approaches to these models have also been developed
(e.g., Zellner 1971; Gulll1989; Dellaportas & Stephens 1995;
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Carroll et al. 1999; Scheines et al. 1999). In addition, methods
have been proposed to account for measurement error in censored
regression (e.g., Stapleton & Young 1984; Weiss 1993). The most
commonly used methods in astronomy are the BCES estimator
(Akritas & Bershady 1996) and the “FITEXY” estimator (Press
et al. 1992). Both methods have their advantages and disadvan-
tages, some of which have been pointed out by Tremaine et al.
(2002). However, neither method is applicable when the data
contain nondetections.

In this work I describe a Bayesian method for handling mea-
surement errors in astronomical data analysis. My approach starts
by computing thelikelihood function'of the complete data, i.e., the
likelihood function of both'theunobserved true values of the data
and themeasured valuesof thedatal The measured data likelihood
is then found by integrating the likelihood function for the com-
plete data over the unobserved true values (e.g., Little & Rubin
2002; Gelman et al. 2004 ). This approach is known'as ““structural
equation'modeling” of measurement error problems and has
been studied from both a frequentist approach (e.g., Fuller 1987,
Carroll et al. 1995; Schafer 2001; Aitken & Rocci 2002) and a
Bayesian approach (e.g., Miiller & Roeder 1997; Richardson &
Leblond 1997; Richardson et al. 2002). In'thiswork T'extend the
statistical model of Carroll et al. (1999) to allow for measurement
errors of different magnitudes (i.e., “heteroscedastic” errors), non-
detections, and selection effects, so long as the selection function
can be modeled mathematically. Our method models the distri-
bution of independent variables as a weighted sum of Gaussian
functions. The mixture of Gaussians model allows flexibility
when estimating the distribution of the true values of the indepen-
dent variable, thus increasing its robustness against model mis-
specification (e.g., Huang et al. 2006). The basic idea is that one
can use a suitably large enough number of Gaussian functions
to accurately approximate the true distribution of independent
variables, even though in general the individual Gaussian func-
tions have no physical meaning.

The paper is organized as follows. In § 2 we summarize some
notation, and in § 3 I review the effects of measurement error on
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the estimates for the regression slope and correlation coefficient.
In § 4 I describe the statistical model and derive the likelihood
functions, and in § 5 I describe how to incorporate knowledge of
the selection effects and account for nondetections. In § 6.1 I de-
scribe the prior distribution for this model, and in § 6.2 I describe
a Gibbs sampler for sampling from the posterior distributions. In
§ 7 L use simulation to illustrate the effectiveness of this structural
model and compare with the OLS, BCES(Y|.X), and FITEXY es-
timators. Finally, in § 8 I illustrate the method using astronomical
data by performing a regression of the X-ray photon index 'y on
the Eddington ratio using a sample of 39 z < 0.83 radio-quiet
quasars. Sections 4, 5, and 6 are somewhat technical, and the
reader who is uninterested in the mathematical and computational
details may skip them.

2. NOTATION

I will use the common statistical notation that an estimate of a
quantity is denoted by placing a “hat” above it; e.g., 8 is an es-
timate of the true value of the parameter 6. In general, greek let-
ters will denote the true value of a quantity, while roman letters
will denote the contaminated measured value. I will frequently
refer to the “bias™ of an estimator. The bias of an estimator is
E(0) — 6, where E(f) is the expectation value of the estimator §
and 0y is the true value of 6. An unbiased estimator is one such
that E(0) = 6,.

I will denote a normal density with mean y and variance o2 as
N(u, 0%), and I will denote as N,(p, ¥) amultivariate normal den-
sity with p-element mean vector p and p x p covariance matrix 3.
If T want to explicitly identify the argument of the Gaussian func-
tion, I will use the notation N (x|, o%), which should be under-
stood to be a Gaussian function with mean y and variance o2 as a
function of x. Following Gelman et al. (2004), I denote the scaled
inverse x? density as Inv x2(v,s?), where v is the degrees of
freedom and s? is the scale parameter, and we denote the inverse
Wishart as Inv Wishart, (S), where v is the degrees of freedom
and S is the scale matrix. The inverse Wishart distribution can be
thought of as a multivariate generalization of the scaled inverse
x? distribution. T will often use the common statistical notation
where a tilde means ““is drawn from” or ““is distributed as.” For
example, x ~ N(p, o?) states that x is drawn from a normal den-
sity with mean  and variance o2,

3. EFFECT OF MEASUREMENT ERROR
ON CORRELATION AND REGRESSION

It is well known that measurement error can attenuate the es-
timate of the regression slope and correlation coefficient (e.g.,
Fuller 1987; Fox 1997). For completeness, I give a brief review
of the effect of measurement error on correlation and regression
analysis for the case of one independent variable.

Denote the independent variable as £ and the dependent vari-
able as 1; € and m are also referred to as the “covariate” and the
“response,” respectively. | assume that £ is a random vector of
n data points drawn from some probability distribution. The de-
pendent variable 1 depends on £ according to the usual additive

model
&
@: o+ +@ (1)

where ¢; is a random variable representing the intrinsic scatter in
7; about the regression relationship and («, 3) are the regression
coefficients. The mean of € is assumed to be zero, and the variance
of € is assumed to be constant and is denoted as o%. We'do'not
observe the actual values of (&, n7), but instead observe values
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(x;y) which'are measured with'error, The measured values are
assumed to be related to the actual values as

(/\VL Pﬁj/(x}
€xis (2)
obs (i

where €; and ¢,; are the random measurement errors on x; and
Vi, respectively In general the errors are normally distributed with
known variances a ;and ay and covariance oy, ;. For simplicity,
throughout the rest of this section I assume that 02, ,and oy, are
the same for each data point.

When the data are measured without error, the least-squares es-
timate of the regression slope, GoLs, and the estimated correlation
coefficient, p, are

. Cov&,m)

BoLs = Vare) (4)
A COV(&, TI) A Var(ﬁ) (5)
P UVar@®Varm) O\ Varim)’

where Cov(&, ) is the sample covariance between & and 7 and
Var(§) is the sample variance of §&. When the data are measured
with error, the least-squares estimate of the regression slope, bors,
and the estimated correlation coefficient, 7, become

oo Cov(x,y) Cov(§,m) + 0y (6)
OLS = Var(x) - Var(§) + o2 ’
Cov(x,y) Cov(§,m) + oy

N ) - (7)
" VarVary) \/ [Var(@) -+ o] [Vartn) + o

From these equations it is apparent that the estimated slope and
correlation are biased when the data are measured with error.

It is informative to assess the effect of measurement error in
terms of the ratios R, = 07/ Var(x), R, = o}/ Var(y), and R, =
oxy/Cov(x, y), as these quant1t1es can be calculated from the data.
The fractional bias in the estimated slope and correlation may
then be expressed as

b 1—R,

5 1-Ry, ®)
P JI-RYT-R)
7= - : 9)

From equations (8) and (9) it is apparent that measurement errors
have the following effects. First, covariate measurement error re-
duces the magnitude of the observed correlation between the inde-
pendent variable and the response, as well as biasing the estimate
of the slope toward zero. Second, measurement error in the re-
sponse also reduces the magnitude of the observed correlation be-
tween the variables. Third, if the measurement errors are correlated,
the effects depend on the sign of this correlation. If the measurement
error correlation has the same sign as the intrinsic correlation be-
tween & and 7, then the measurement errors cause a spurious in-
crease in the observed correlation; otherwise, the measurement
errors cause a spurious decrease in the observed correlation. The
magnitude of these effects depend on how large the measurement
errors are compared to the observed variance in x and y.

In Figure 1 I plot the fractional bias in the correlation coefficient,
(p — 7)/p, as a function of R, and R, when the errors are uncor-
related. As can be seen, measurement error can have a significant
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Fic. 1.—Fractional bias in the correlation coefficient when the data are contami-
nated with measurement error. The fractional bias is shown as a function of the contri-
bution of measurement error to the observed variance in both x and y, for uncorrelated
measurement errors. When the measurement errors make up ~50% of the observed
variance in both x and y, the observed correlation coefficient is reduced by about
~50%.

effect on the estimation of the linear correlation coefficient. For
example, when R, ~ 0.5 and R, = 0.5, the estimated correlation
is’=50% lower than the true correlation. Therefore, interpretation
of correlation coefficients and regression slopes must be ap-
proached with caution when the data have been contaminated by
measurement error. To ensure accurate results, it is necessary to
employ statistical methods that correct for the measurement errors.

4. THE STATISTICAL MODEL
4.1. Regression with One Independent Variable

I assume that the independent variable £ is drawn from a prob-
ability distribution p(£|t), where 1) denotes the parameters for
this distribution. The dependent variable is then drawn from the
conditional distribution of 7 given &, denoted as p(7)|¢, 0); 0 de-
notes the parameters for this distribution. The joint distribution
of & and 7 is then p(§, n|1p, 0) = p(n|€, O)p(£|p). In this work T
assume the normal linear regression model given by equation’(l),
and thus, p(n|¢, ) is a normal density with mean « 4+ 3¢ and
variance o2, and 0 = («, 3, 02).

Since the data are a randomly observed sample, we can derive
the likelihood function for the measured data. The likelihood func-
tion of the measured data, p(x, y|0, 1), is obtained by integrating
the complete data likelihood over the missing data, £ and 7 (e.g.,

Little & Rubin 2002; felman et al. 2004),
} ( wAion

P30, %) / [ pv o an, (o)
wtd 155} J’M‘% s
where p(x, y, £, 1|0, 1) is the complete data likelihood function.
Because of the hierarchical structure inherent in the measurement
error model, it is helpful to decompose the complete data likeli-
hood into conditional probability densities,

pio. )= [ [ psiemtils, Opelwaan. (1)

The density p(x, y|£, 1) describes the joint distribution of the mea-
sured values x and y ata given £ and 1) and depends on the assumed
distribution of the measurement errors, €, and ¢,. In this work I
assume Gaussian measurement error, and thus, p(x;, y;|&;, ;) is a
multivariate normal density with mean (¢;, 7;) and covariance ma-
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triin,wherele i= y1,222, XI,aIleul—O'xy, The sta-
tistical model nﬁ then be conveniently expressed hierarchically as

Depania

uth ;7 & ~ p(&l), /wﬂd (12)
Tndepe S g N+ 565, (13)
Vi, Xilni, & ~ Na([ni, &, Z:)_ (14)

%Se(l/ﬂ yonS /(:> me

Note that if x; is measured without error, then p(x;|¢;) is a Dirac
é-function, and p(x;, yi|&;, m:) = p(yi|n)d(xi — &;). An equivalent
result holds if y; is measured without error.

Equation (11) may be used to obtain the observed data like-
lihood function for any assumed distribution of £. In this work,
I model p(€|1)) as a mixture of K Gaussian functions,

Deprdand
g ST o[- L&)
P&l = exp|—5=— [, (19)

pﬂls"“— boalion k=1 42072 Tk

where Zle mr = 1. Note that m; may be interpreted as the
probability of drawing a data point from the kth Gaussian func-
tion. I will use the convenient notation 7 = (7, . . . , k), p =
(g, - - -y pig),and T2 = (72, . . ., 72); note that ¢ = (m, p, 72).
It is useful to model p(£€|v)) using this form, because it is flexible
enough to adapt to a wide variety of distributions, but is also
conjugate for the regression relationship (eq. [1]) and the mea-
surement error distribution, thus simplifying the mathematics.

Assuming the Gaussian mixture model for p(&|v)), the mea-
sured data likelihood for the ith data point can be directly calcu-
lated using equation (11). Denoting the measured data as z =
(¥, x), the measured data likelihood function for the ith data point
is then a mixture of bivariate normal distributions with weights
7w, means ¢ = ((;, . . .,Cx), and covariance matrices V; =
(Vi4, . . ., Vk,). Because the data points are statistically inde-
pendent, the full measured data likelihood is then the product of
the likelihood functions for the individual data points,

px.y|0,9) = HZ

1T 2w |Vk,”2
X exp [—1@ )Vl - cu} . (16)
Cr = (04+5Mk7/ik)» (17)
2,2 2 2 )
v (T ) o

where z” denotes the transpose of z. Equation (16) may be max-
imized to compute the maximum likelihood estimate (MLE ). When
K > 1, the expectation-maximization (EM) algorithm (Dempster
et al. 1977) is probably the most efficient tool for calculating the
MLE. Roy & Banerjee (2006) describe an EM algorithm when
p(&) is assumed to be a mixture of normals and the measurement
error distribution is multivariate ¢, and their results can be ex-
tended to the statistical model described in this work.

It is informative to decompose the measured data likelihood,
p(xi, 1110, ) = p(yi|xi, 0, Y)p(x;|1p), as this representation is use-
ful when the data contain nondetections (see § 5.2). The marginal
distribution of x; is

K 2
el =3 ——T exp [— L))
k

7 2
=1 \/27 (¢ +0}) 2 7 +og;

(19)
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and the conditional distribution of y; given x; is

K
Vi
i 0,9) =) —eeee——xs
P(yil ¥) ; 2w Var(y;|x;, k)

1 [yi — E(yilxi, b))
X exp{ - E Var(yi|-xi, k) } 5 (20)

NG|y, T2+ 02)

Tk = ' , (21)
Zf:l N (i sz + Uf,i)
67-2 + Oxy.i ﬂo—xz,i - ny,[
E(yilxi k) = o+ Tkg_,_g;' i Tk2’+02' e, (22)
2
/BTkZ_UX).i)
Var(y;|x;, k) = 2TZ+02+02~—(7}', 23
(il k) = 77y (i ) (23)

where ~y; can be interpreted as the probability that the ith data point
was drawn from the kth Gaussian function given x;, E(y;|x;, k)
gives the expectation value of y; at x;, given that the data point
was drawn from the kth Gaussian function, and Var( y;|x;, k) gives
the variance in y; at x;, given that the data point was drawn from
the kth Gaussian function.

4.2. Relationship between Uniformly Distributed
Covariates and Effective x* Estimators

It is informative to investigate the case where the distribution
of £ is assumed to be uniform, p(§) o< 1. Interpreting p(§) as a
“prior” on &, one may be tempted to consider assuming p(£€) o< 1
as a more objective alternative to the normal distribution. A uni-
form distribution for & may be obtained as the limit 72 — 0o, and
thus, the likelihood function for p(€) o 1 can be calculated from
equation (20) by taking 72 — oo and K = 1. When the mea-
surement errors are uncorrelated, the likelihood for uniform p(£)
is

z 1
Py, 0) =]
i=1 \/27T(02 + U}ii + 820,

I (yi—a— ﬁxi)z
X € ——
xpl 252 + Uyz’i + 520’31

] . (4)

The argument of the exponential is the FITEXY goodness of fit
statistic, xyy» as modified by Tremaine et al. (2002) to account
for intrinsic scatter; this fact has also been recognized by Weiner
etal. (2006). Despite this connection, minimizing X3y is not the
same as maximizing the conditional likelihood of y given x, as
both 3 and o2 appear in the normalization of the likelihood func-
tion as well.

For a given value of o2, minimizing 2 can be interpreted as
minimizing a weighted sum of squared errors, where the weights
are given by the variances in y; at a given x; and one assumes a
uniform distribution for £ Unfortunately, this is only valid for a
fixed value of o2. Moreover, little is known about the statistical
properties of the FITEXY estimator, such as its bias and variance,
although bootstrapping (e.g., Efron 1979; Davison & Hinkley
1997) may be used to estimate them. Furthermore, it is ambiguous
how to calculate the FITEXY estimates when there is an intrinsic
scatter term. The FITEXY goodness of fit statistic, X%y, cannot
be simultaneously minimized with respect to cv, 3, and 02, as X yy
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is a strictly decreasing function of o-2. As such, it is unclear how to
proceed in the optimization beyond an ad hoc approach. Many
authors have followed the approach adopted by Tremaine et al.
(2002) and increase o2 until xZyy /(7 — 2) = 1 orassume o> =0
if x2yy/(n —2) < 1.

Despite the fact that minimizing Y2y is not the same as max-
imizing equation (24), one may still be tempted to calculate a
MLE based on equation (24). However, it can be shown that if
one assumes p(&) o 1 and if all of the x and y have the same re-
spective measurement error variances, af and o2, the MLE es-
timates for o and (3 are just the OLS estimates (Zellner 1971).
While this is not necessarily true when the magnitudes of the mea-
surement errors vary between data points, one might expect that
the MLE will behave similarly to the OLS estimate. I confirm this
fact using simulation in § 7.1. Unfortunately, this implies that the
MLE for p(§) o< 1 inherits the bias in the OLS estimate, and thus,
nothing is gained. Furthermore, as argued by Gull (1989) one
can easily be convinced that assuming p(§) o 1 is incorrect by
examining a histogram of x.

4.3. Regression with Multiple Independent Variables

The formalism developed in § 4.1 can easily be generalized to
multiple independent variables. In this case, equation (1) becomes

n=a+p"¢+e, (25)

where 3 is now a p-element vector and &; is a p-element vec-
tor containing the values of the independent variables for the ith
data point. Similar to before, we assume that the distribution of §;
can be approximated using a mixture of K multivariate nor-
mal densities with p-element mean vectors p = (i, - . . , ),
p X p covariance matrices T = (T, . . ., Tx), and weights 7 =
(my, . . ., mk). The measured value of &; is the p-element vec-
tor x;, and the Gaussian measurement errors on (y;,x;) have
(p+ 1)x(p+ 1) covariance matrix ;. The statistical model
is then

K
£i ~ Z 7T/(Np(/,l,k, T/C)7 (26)

k=1
771"5;‘ NN(a+/3T£iaUZ)7 (27)
Viy Xi0i, & ~ Np1([mi, &, i) (28)

Denoting z; = ()4, X;), the measured data likelihood is

n K
p(x,y|0,) = HZ (27_‘.)(17+1)/2|Vk .‘1/2

i=1 k=1

1
X €xXp [— E(Zi - Ck)TVl:,} (zi — Ck)] ) (29)

Cr = (a + 8"y, Hk)» (30)
T 2 2 T T
T . T )
vi = (PP BT ) )
TkIB + Oyy,i Tk + 2:x,i

where ¢, is the (p 4 1)-element mean vector of z; for Gaussian
function k, Vy; is the (p 4+ 1) x (p + 1) covariance matrix of z;
for Gaussian function £, ayz_l. is the variance in the measurement
€ITor on y;, Oy, ; is the p-elément vector of covariances between
the measurement errors on y; and x;, and 3, ; is the p x p covari-
ance matrix of the measurement errors on x;.
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Similar to the case for one independent variable, the measured
data likelihood can be decomposed as p(x, y|0, 1) = p(y|x, 0, 1) x

P(x|v), where p(x;|p) = 5| miNy(xi|py, Trc + i)

K

P(xi|'¢) =

k=1

7T'k]\'[p(xi|/~‘l’k7Tk + Z:x,i)v (32)

K

Yk
,—x,-,ﬂ, = AN ol )
P(J’| Y) ; 27rVar(yi|xi,k)

1 [y; — E(yilxi, b))
Xexp{_z Var(y b, ) } )

TN Qi |, Tre 4+ i 5)

L S N, T+ ) G4
E(yilxi, k) = o+ B + (B"Tx + O{y.f)
X (T + Ex,i)il(xi = ), (35)
Var(ylxi,k) = B’ TuB+ 0* + 0, — (B Ti + o))

X(Tx + 2, ) (TuB + 0. (36)

5. DATA COLLECTION ISSUES:
SELECTION EFFECTS AND NONDETECTIONS

There are several issues common in the collection of astro-
nomical data that violate the simple assumptions made in § 4.
Astronomical data collection consists almost entirely of passive
observations, and thus, selection effects are a common concern.
Instrumental detection limits often result in the placement of upper
or lower limits on quantities, and astronomical surveys are fre-
quently flux limited. In this section I modify the likelihood func-
tions described in § 4 to include the effects of data collection.

General methods for dealing with missing data are described
in Little & Rubin (2002) and Gelman et al. (2004), and I ap-
ply the methodology described in these references to the mea-
surement error model developed here. Although in this work I
focus on linear regression, many of these results can be applied
to more general statistical models, such as estimating luminosity
functions.

5.1. Selection Effects

Suppose that one collects a sample of n sources out of a pos-
sible N sources. One is interested in understanding how the ob-
servable properties of these sources are related, but is concerned
about the effects of the selection procedure on the data analysis.
For example, one may perform a survey that probes some area of
the sky. There are N sources located within this solid angle,
where N is unknown. Because of the survey’s selection method,
the sample only includes 7 sources. In this case, the astronomer is
interested in how measurement error and the survey’s selection
method affect statistical inference.

Iinvestigate selection effects within the framework of our sta-
tistical model by introducing an indicator variable, 7, which de-
notes whether a source is included in the sample. If the ith source
is included in the sample, then /; = 1, otherwise /; = 0. In ad-
dition, I assume that the selection function only depends on the
measured values, x and y. Under this assumption, the selection
function of the sample is the probability of including a source with
agivenx andy, p(I|x,y). This is commonly the case in astronomy,
where sources are collected based on their measured properties.
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For example, one may select sources for a sample based on their
measured properties as reported in the literature. In addition, if one
performs a flux-limited survey, then a source will only be con-
sidered detected if its measured flux falls above some set flux
limit. If a sample is from a survey with a simple flux limit, then
p(l; = 1|y;) = 1 if the measured source flux y; is above the flux
limit or p(Z; = 1]y;) = 0 if the measured source flux is below the
flux limit. Since the selection function depends on the measured
flux value and not the true flux value, sources with true flux val-
ues above the flux limit can be missed by the survey, and sources
with true flux below the limit can be detected by the survey. This
effect is well known in astronomy and is commonly referred to as
Malmquist bias (e.g., Landy & Szalay 1992).

Including the variable 7, the complete data likelihood can be
written as

px,y,&m,110,¢) = pI|x, y)p(x,y|&, mp(n|€, O)p(£|¥).
(37)

Equation (37) is valid for any number of independent variables, and
thus, x; and &; may be either scalars or vectors. Integrating equa-
tion (37) over the missing data, the observed data likelihood is

P(obs: Yous|0, 1, N) o< C [ Pl 31160, %)

i€ Agps
< 11

Jje Amis

x p(1&;, O)p(&j|)dx; dy; dE; dny, (38)

/ (I = Olx;, yp (e, vil&i, m7)

where C fl\' is the binomial coefficient, A5 denotes the set of
included sources, xqbs and y,, denote the values of x and y for
the included sources, and A s denotes the set of N — n missing
sources. In addition, I have omitted terms that do not depend on
0, 1), or N. Note that N is unknown and is thus also a parameter
of the statistical model. The binomial coefficient is necessary be-
cause it gives the number of possible ways to select a sample of n
sources from a set of NV sources.

It is apparent from equation (38) that statistical inference on
the regression parameters is unaffected if the selection function
is independent of y and x (e.g., Little & Rubin 2002; Gelman
et al. 2004). In this case the selection function may be ignored.

5.1.1. Selection Based on Measured Independent Variables

It is commonly the case that a sample is selected based only on
the measured independent variables. For example, suppose one
performs a survey in which all sources with measured optical flux
greater than some threshold are included. Then, these optically
selected sources are used to fit a regression in order to understand
how the X-ray luminosity of these objects depends on their op-
tical luminosity and redshift. In this case, the probability of in-
cluding a source only depends on the measured values of the
optical luminosity and redshift and is thus independent of the
X-ray luminosity.

When the sample selection function is independent of y, given x,
then p(I|x,y) = p(I|x). Because we are primarily interested in the
regression parameters 0, I model the distributions of & for the in-
cluded and missing sources separately, with the parameters for
the distribution of included sources denoted as ). In addition,
I assume that the measurement errors between y and x are sta
tistically independent. Then the N — » integrals over y and 7 for


Benjamin Rose


1494 KELLY

the missing sources in equation (38) are equal to unity, and we
can write the observed data likelihood as

PXobs Yobs|0; Pobs) X Pil&Dp(yilm:)
ool h) < ] | [/
xpmi|&:, OPp&|L = 1,9 ops)dE; dy, (39)

where p(&|I; = 1,1),) is the distribution of those £ included in
one’s sample. Here I have omitted terms depending on N, because
one is primarily interested in inference on the regression param-
eters 0. Equation (39) is identical to equation (11), with the ex-
ception that p(&|v) now only models the distribution of those
£ that have been included in one’s sample, and I have now as-
sumed that the measurement errors on y and x are independent.
In particular, for the Gaussian mixture models described in § 4.1
and § 4.3, the observed data likelihood is given by equations (16)
and (29), where 7, t, and 72 (or T) should be understood as
referring to the parameters for the distribution of the observed €.
As is evident from the similarity between equations (39) and
(11), if the sample is selected based on the measured independent
variables, then inference on the regression parameters 0 is un-
affected by selection effects.

5.1.2. Selection Based on Measured
Dependent and Independent Variables

Ifthe method in which a sample is selected depends on the mea-
sured dependent variable, y, the observed data likelihood becomes
more complicated. As an example, one might encounter this
situation if one uses an X-ray—selected sample to investigate the
dependence of X-ray luminosity on optical luminosity and red-
shift. In this case, the selection function of the sample depends on
both the X-ray luminosity and redshift and is thus no longer
independent of the dependent variable. Such data sets are said to
be “truncated.”

If the selection function depends on y, one cannot simply
ignore the terms depending on N, since the N — n integrals in
equation (38) depend on 0. However, we can eliminate the depen-
dence of equation (38) on the unknown N by applying a Bayesian
approach. The posterior distribution of 6, ¥, and N is related to
the observed data likelihood function as p(0, ¥, N |Xobs, Yops) X
PO, %, N )Xo Yops 0, 1, N ), where p(8, b, N') i the prior dis-
tribution of (8, 1, N). If we assume a uniform prior on 0, 1, and
log N, then one can show (e.g., Gelman et al. 2004) that the pos-
terior distribution of 8 and ) is

PO, Plxans, Yop) o [pU =110,9)] " [ p(xi,3:10,0),  (40)
i=1

where p(x;, y;|0, 1) is given by equation (11) and p(I = 1|0, %)
is the probability of including a source in one’s sample, given the
model parameters 0 and 1),

P = 110,4) = / / 0 = 1, )p(, 110, )dxdy.  (41)

I have left off the subscripts for the data points in equation (41),
because the integrals are the same for each (x;,y;, &, ;). If one
assumes the Gaussian mixture model of §§ 4.1 and 4.3, then
p(xi,v:]0, %) is given by equations (16) or (29). The posterior
mode can then be used as an estimate of @ and v, which is found
by maximizing equation (40).
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5.2. Nondetections

In addition to issues related to the sample selection method, it
is common in astronomical data to have nondetections. Such non-
detections are referred to as “censored” data, and the standard
procedure is to place an upper and/or lower limit on the cen-
sored data point. Methods of data analysis for censored data have
been reviewed and proposed in the astronomical literature (e.g.,
Feigelson & Nelson 1985; Schmitt 1985; Marshall 1992; Akritas
& Siebert 1996), and Isobe et al. (1986) describe censored re-
gression when the variables are measured without error. See
Feigelson (1992) for a review of censored data in astronomy.

To facilitate the inclusion of censored data, I introduce an ad-
ditional indicator variable, D, indicating whether a data point is
censored or not on the dependent variable. If y; is detected, then
D; =1, else if y; is censored, then D; = 0. It is commonly the
case that a source is considered “detected” if its measured flux
falls above some multiple of the background noise level, say 3 o.
Then, in this case, the probability of detecting the source given
the measured source flux y; is p(D; = 1|y;) = 1 ify; > 3 0, and
p(D; =0|y) =1 if y; <3 0. Since source detection depends
on the measured flux, some sources with intrinsic flux 7 above
the flux limit will have a measured flux y that falls below the flux
limit. Similarly, some sources with intrinsic flux below the flux
limit will have a measured flux above the flux limit.

I assume that a sample is selected based on the independent
variables, i.e., p(I|x,y) = p(I|x). It is difficult to imagine obtain-
ing a censored sample if the sample is selected based on its de-
pendent variable, as some of the values of y are censored and thus
unknown. Therefore, I only investigate the effects of censoring
on y when the probability that a source is included in the sam-
ple is independent of y, given x. In addition, I do not address the
issue of censoring on the independent variable. Although such
methods can be developed, it is probably simpler to just omit
such data, as inference on the regression parameters is unaffected
when a sample is selected based only on the independent vari-
ables (see § 5.1.1).

The observed data likelihood for an x-selected sample is given
by equation (39). We can modify this likelihood to account for
censored y by including the indicator variable D and again inte-
grating over the missing data,

p(xobmyobsaDwvwobs)O( H p(xivyi‘ea'l/)obs) H p(xjh/)obs)

i€ Adet J € Acens

< / POy = 013, P15, 0, Yoy, (42)

where the first product is over the set of data points with de-
tections, Ag4e, and the second product is over the set of data
points with nondetections, Ac,s. The conditional distribution
P(y1x;,0,4) and the marginal distribution p(x;j|1)) for the
Gaussian mixture model are both given in §§ 4.1 and 4.3. If
the data points are measured without error and one assumes the
normal regression model p(n|&, 0) = N(|a + (£, 0'2), then equa-
tion (42) becomes the censored data likelihood function described
in Isobe et al. (1986). A MLE for censored regression with mea-
surement errors is then obtained by maximizing equation (42).

6. COMPUTATIONAL METHODS

In this section I describe a Bayesian method for computing
estimates of the regression parameters 0 and their uncertainties.
The Bayesian approach calculates the posterior probability dis-
tribution of the model parameters, given the observed data, and
therefore is accurate for both small and large sample sizes. The
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posterior distribution follows from Bayes’ formula as p(6, ¥|x,y)
p(0,Y)p(x,y|0, 1), where p(0, 1) is the prior distribution of the
parameters. I describe some Markov chain methods for drawing
random variables from the posterior, which can then be used to es-
timate quantities such as standard errors and confidence intervals
on 0 and 1. Gelman et al. (2004) is a good reference on Bayesian
methods, and Loredo (1992) gives a review of Bayesian methods
intended for astronomers. Further details of Markov chain simula-
tion, including methods for making the simulations more efficient,
can be found in Gelman et al. (2004).

6.1. The Prior Density

In order to ensure a proper posterior for the Gaussian mix-
ture model, it is necessary to invoke a proper prior density on
the mixture parameters (Roeder & Wasserman 1997). I adopt
a uniform prior on the regression parameters (o, 3,02) and

take my, ..., mg ~ Dirichlet(1l, . . .,1). The Dirichlet den-
sity is a multivariate extension of the Beta density, and the
Dirichlet(1, . . ., 1) prior adopted in this work is equivalent to

a uniform prior on 7r, under the constraint Zle m = 1.

The prior on g and 72 (or T) adopted in this work is very
similar to that advocated by Roeder & Wasserman (1997) and
Carroll et al. (1999). I adopt a normal prior on the individual
with mean 1, and variance #* (or covariance matrix U). This
reflects our prior belief that the distribution of £ is more likely to
be fairly unimodal and, thus, that we expect it to be more likely
that the individual Gaussian functions will be close together than
far apart. If there is only one covariate, then I adopt a scaled
inverse X prior on the individual 72 with scale parameter w? and
one degree of freedom; otherwise, if there are p > 1 covariates, |
adopt an inverse Wishart prior on the individual T; with scale
matrix W and p degrees of freedom. This reflects our prior ex-
pectation that the variances for the individual Gaussian compo-
nents should be similar, but the low number of degrees of freedom
accommodates a large range of scales. Both the Gaussian means
and variances are assumed to be independent in their prior distri-
bution, and the “hyperparameters” g, 2 (or U), and w? (or W)
are left unspecified. By leaving the parameters for the prior dis-
tribution unspecified, they become additional parameters in the
statistical model and therefore are able to adapt to the data.

Since the hyperparameters are left as free parameters, they also
require a prior density. I assume a uniform prior on 11, and w? (or
W). If there is one covariate, then I assume a scaled inverse x>
prior for u? with scale parameter w? and one degree of freedom;
otherwise, if there are multiple covariates, I assume an inverse
Wishart prior for U with scale matrix W and p degrees of free-
dom. The prior on u? (or U) reflects the prior expectation that the
dispersion of the Gaussian components about their mean
should be on the order of the typical dispersion of each indi-
vidual Gaussian function. The prior density for one covariate
is then p(8,, py, u?, w?) o p(m)p(pal g, u)p(r 2 wHp(u?|w?)
and is summarized hierarchically as

N
(o¢]

1o ~ Uniform(—oo0, 00),

N
\O

o, 8 ~ Uniform(—o0, 00), (43)

% ~ Uniform(0, c0), (44)

7 ~ Dirichlet(l, . . ., 1), (45)

frs - oo pigclptg, u? ~ N(pg, u?), (46)
2T ut wh ~ Ty XA (1, w?), (47)
(48)

(49)

w? ~ Uniform(0, oo).
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The prior density for multiple covariates is just the multivariate
extension of equations (43)—(49).

6.2. Markov Chains for Sampling
from the Posterior Distribution

The posterior distribution summarizes our knowledge about
the parameters in the statistical model, given the observed data
and the priors. Direct computation of the posterior distribution
is too computationally intensive for the model described in this
work. However, we can obtain any number of random draws
from the posterior using Markov chain Monte Carlo (MCMC)
methods. In MCMC methods, we simulate a Markov chain that
performs a random walk through the parameter space, sav-
ing the locations of the walk at each iteration. Eventually, the
Markov chain converges to the posterior distribution, and the
saved parameter values can be treated as a random draw from
the posterior. These random draws can then be used to estimate
the posterior median for each parameter, the standard error for
each parameter, or plot a histogram as an estimate of the marginal
probability distribution for each parameter.

6.2.1. Gibbs Sampler for the Gaussian Model

The easiest method for sampling from the posterior is to
construct a Gibbs sampler. The basic idea behind the Gibbs
sampler is to construct a Markov chain, where new values of
the model parameters and missing data are simulated at each
iteration, conditional on the values of the observed data and
the current values of the model parameters and the missing
data. Within the context of the measurement error model con-
sidered in this work, the Gibbs sampler undergoes four different
stages.

The first stage of the Gibbs sampler simulates values of the
missing data, given the measured data and current parameter
values, a process known as data augmentation. In this work, the
missing data are 7, £, and any nondetections. In addition, I in-
troduce an additional latent variable, G;, which gives the class
membership for the ith data point. The vector G; has K elements,
where G = 1 if the ith data point comes from the kth Gaussian
function, and G;; = 0if j # k. I will use G to refer to the set of n
vectors G;. Noting that 7, gives the probability of drawing a data
point from the Ath Gaussian function, the mixture model for &
may then be expressed hierarchically as

G;|m ~ Multinom(1, 7y, . . ., 7g), (50)

§i|Gik - 1a:uk57k2 NN(:uvakz)a (51)

where Multinom(m, p1, . . ., px) is a multinomial distribution
with m trials, where py is the probability of success for the kth
class on any particular trial. The vector G; is also considered to
be missing data and is introduced to simplify construction of the
Gibbs sampler.

The new values of the missing data simulated in the data aug-
mentation step are then used to simulate new values of the regres-
sion and Gaussian mixture parameters. The second stage of the
Gibbs sampler simulates values of the regression parameters 0,
given the current values of & and 7). The third stage simulates
values of the mixture parameters ), given the current values of €
and 7). The fourth stage uses the new values of 0 and 1) to update
the parameters of the prior density. The values of the parameters
are saved, and the process is repeated, creating a Markov chain. Af-
ter a large number of iterations, the Markov chain converges, and
the saved values of 6 and 1) from the latter part of the algorithm
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may then be treated as a random draw from the posterior distri-
bution, p(0, ¥’|x,y). Methods for simulating random variables from
the distributions used for this Gibbs sampler are described in var-
ious works (e.g., Ripley 1987; Press et al. 1992; Gelman et al.
2004).

A Gibbs sampler for the Gaussian mixture model is presented
below.

1. Start with initial guesses for 1, G, 0, 1), and the prior
parameters.

2. Ifthere are any nondetections, then draw y; for the censored
data points from p(y;|n;, D; = 0) &< p(D; = 0] y;)p(yi|n;). This
may be done by first drawing y; from p( y;|n;),

vilni ~N(@i, 07 ))- (52)

One then draws a random variable u;, uniformly distributed on
[0, 1]. If u; < p(D; = 0|y;), then the value of y; is kept; other-
wise, one draws a new value of y; and u; until u; < p(D; = 0] ;).

3. Draw values of & from p(€|x,y,n, G, 0, 1)). The distribu-
tion p(&€lx,y,m, G, 0, 1) can be derived from equations (12)—
(14) or (26)—(28) and the properties of the multivariate normal
distribution.

a) If there is only one independent variable, then &; is up-
dated as

§i|xi7yiani7Gl707¢NN(éiaoéi)7 (53)
K A
= Z Gikgika (54)
k=1
éxyz /6(771 - O{) Hi
i = + +=|. (55
(1 - pxyl) 02 Tkz ( )
gxy,i =X; + _yi)a (56)
i
K
0-52’1 = kZ; Gikaéik7 (57)
-1
1 52 1
2
0=l t =+t 58
& ik |f7‘ ( px% ) 2] ( )

where py,.; = 0x.i/(0x,0,,) is the correlation between the mea-
surement errors on x; and y;. Note that &; is updated using only
information from the kth Gaussian function, since G;; =1 only
for j = k and G;; = 0 otherwise.

b) If there are multiple independent variables, I have found
it easier and computationally faster to update the values of &; us-
ing a scalar Gibbs sampler. In this case, the p elements of &; are
updated individually. I denote {; to be the value of the jth
independent variable for the ith data point and x;; to be the mea-
sured value of &;. In addition, I denote §; _; to be the (p — 1)
element vector obtained by removing &; from &;, i.e., & 5=
&ty - 5 &i-1 Sijr1ys - - -5 Eip)- Similarly, B_; denotes the
(p — 1)-element vector of regression coefficients obtained after
removing 3; from 3. Then, &; is updated as

Eij|xiayi7Gi7€i7—j777i707¢NN(éijvo—éU)a (59)

K
&= Gui, (60)
k=1

Vol. 665
: (S + (T )y + B —a— B1E ) /o0
ik — _ — )
’ (SO ey jen) + Ty + 87 0
(61)
yi—mi, =1,
@) = 9 Xi I=j+1, (62)
xll_gila Z7é]+17
(k)1 l=j,
(i) = { ‘ (63)
TN — & 14,
K
2 2
T~ ; Gik0 o (64)
ﬂz -
f,z/k (& 1) (DG T (T )j] + ? (65)

where 7} is a (p + 1)-element vector obtained by subtracting
(n:, &) from z; = (4, x;), with the exception of the jth element of
&;; instead, the (j + 1)th element of z is just x;;. The p-element
vector p, is obtained in an equivalent manner. The (p + 1) x
(p + 1) matrix 3; is the covariance matrix of the measurement
errors on z;. The term (E;IZ?)(jJrl) denotes the (j + 1)th ele-
ment of the vector 3 'z* and likewise for (T} u,k) The terms
(D141 and (T 1)” denote the (7 + 1)th and jth ele-
ments of the diagonals of E and T,: , respectively. This step is
repeated until all p 1ndependent variables have been updated
for each data point.

If any of the &; are measured without error, then one simply
sets &; = x; for those data points.

4. Draw values of n from p(n|x,y, £, ). Similar to &, the dis-
tribution p(nlx,y, £, 0) can be derived from equations (12)—
(14) or (26)—(28) and the properties of the multivariate normal
distribution.

a) If there is only one covariate, then 7) is updated as

ni'xiayhé-hoNN(ﬁiao—',%i)? (66)
R Vi + 0y,i(& — X)) 2, + B
= O',%_,' 2}’ — / « zﬂé. , (67)
Uy,i( pxy z) g

-1
1 1
2
or =l —+t—| - (68)
" [Uﬁi(l_pé,[) 02]

b) If there are multiple covariates, then 7 is updated as

ni|xi7yi7€i>0 NN(ﬁiaO-y%,i)v (69)
) rergee
" (2;1)114'1/02 7

_ 1]
U’%,i: [(Ei l)11+02} ’ (71)
Z:F = (yi;xi - gi)a (72)

where (X; 'z}), is the first element of the vector £, 'z}, z} is a
(p + 1)-element vector whose first element is y; and remaining
elements are x; — &;, and (Zi’l) 11 1s the first diagonal element of
=

l
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If any of the 7 are measured without error, then one sets n =y
for those data points.

5. Draw new values of the Gaussian labels, G. The condi-
tional distribution of G; is multinomial with number of trials
m = 1 and group probabilities g, = p(Gy = 1|&, ),

G,»|§,»,1/J ~ Multinom(1, gy, . . ., gk), (73)
_ WkNp(fiWk»Tk)
S NGl T)

(74)

Note that if there is only one covariate then p = 1 and T} = 7.
6. Draw (o, 3) from p(c, B|€, 1, 0%). Given £, , and o2, the
distribution of o and (3 is obtained by ordinary regression,

Oé,ﬁ|£, 77702NNp+1(é»26)7 (75)
&= (X"X) X", (76)
S = (X'X) o2, (77)

where X is a n x ( p + 1) matrix, where the first column is a col-
umn of ones, the second column contains the » values of &; for
the first independent variable, the third column contains the # val-
ues of ; for the second independent variable, etc.

7. Draw a new value of o2 from p(o2|€,n, a, B). The distri-
bution p(c2|€,m, a, 3) is derived by noting that given o, 3, and
&, 1; is normally distributed with mean o + 37 €; and variance
o%. Reexpressing this distribution in terms of 0% instead of 17 and
taking the product of the distributions for each data point, it fol-
lows that o2 has a scaled inverse x? distribution,

02|£7 n, O[,ﬂ ~ Inv XZ (1/>Sz)a (78)
v=n-—2, (79)
= LS a8 (50)

i=1

8. Draw new values of the group proportions, 7. Given G, 7
follows a Dirichlet distribution,

7|G ~ Dirichlet(n; + 1, . . . ,ng + 1), (81)
ny = Z Gik- (82)
i=1

Note that n; is the number of data points that belong to the kth
Gaussian function.

9. Draw anew value of y; from p(i|€, G, Ty, pg, U). If there
is only one independent variable, then Ty = 72 and U = u?. The
new value of y is simulated as

ﬂk‘SaGaTlmﬂOvUNNp(lakvzﬂ;\»)v (83)
= (U + ) (U g + T &), (84)
- 1 &
&=—Y Gk (85)
Me 3
S = (U + 1) (86)

10. Draw a new value of Tk2 or Ty. The distribution of 72 |&, p
or Tx|&, p is derived in a manner similar to o2|€, 7, o, 3, after
noting that the prior is conjugate for this likelihood. The distri-
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bution of 772|&, p is a scaled inverse x? distribution, and the
distribution of Ty |&, w is an inverse Wishart distribution.
a) If there is only one independent variable, then draw

&G, w? ~ Ty 2 (v, ), (87)
Ve =+ 1, (88)

1 n
tz = 2 Gi i 2 . 89
k ' _|_ 1 w + ; k(g /‘l’k) ( )

b) If there are multiple independent variables, then draw

Ti|€, G, py, W ~ Inv Wishart,, (S¢), (90)

vy = n; +p, (91)

S =W+ Z Gir(& — o) (& — m)"- (92)
i=1

11. Draw a new value for |, U. Noting that conditional
on p, and U, py, ..., ux are independently distributed as
Ny(py, U), it is straightforward to show that

NO|/L7UNNIJ(/_1'7U/K)a (93)
1 K

=7 Fo- (94)
Kk:l

If there is only one covariate, then p = 1 and U = .

12. Draw a new value for u? or U, given 1, i, and w? (or W).
Similar to the case for Tkz or Ty, the conditional distribution of
u? or U is scaled inverse x? or inverse Wishart.

a) If there is only one covariate, then

u2|uo,u,w2~1nv XZ(V,,,L?Z), (95)
ve=K+]1, (96)
K
@ =— Wy Gy — uof] : (97)
u k=1

b) If there are multiple covariates, then

Ul o, p, W ~ Inv Wishart,,, (U), (98)
vy = K + D, (99>
R K
U=W+> iy — po)y — )" (100)
=1

13. Finally, draw a new value of w?|u?, 7% or W|U, T.

a) If there is only one covariate, then w?|u?, 72 is drawn
from a Gamma distribution. This can be derived by noting that
pw?u?, %) o< p(u?|w?)p(r?|w?) has the form of a Gamma dis-
tribution as a function of w?. The new value of w? is then sim-
ulated as

w?|u?, 72 ~ Gamma(a, b), (101)
1
a=2(K+3), (102)
11 &
b==|— — . 103
2<u2+;7'k2> (103)

b) If there are multiple covariates, then W|U, T is drawn
from a Wishart distribution. This can be derived by noting that
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p(W|U, T) x p(U|W)p(T|W) has the form of a Wishart distri-
bution as a function of W. The new value of W is then simulated
as

W|U, T ~ Wishart,,, (W), (104)
vw =K +2)p+1, (105)

K -1
W= <U—1+ZT,;1> . (106)
k=1

After completing steps 2—13 above, an iteration of the Gibbs
sampler is complete. One then uses the new simulated values of
&, 1, 0, 1), and the prior parameters and repeats steps 2—13. The
algorithm is repeated until convergence, and the values of 6 and
) at each iteration are saved. Upon reaching convergence, one
discards the values of 6 and ) from the beginning of the simu-
lation, and the remaining values of o, 3, o2, p, and 72 (or T') may
be treated as a random draw from the posterior distribution,
p(6,1]x,y). One can then use these values to calculate estimates
of the parameters and their corresponding variances and confi-
dence intervals. The posterior distribution of the parameters can
also be estimated from these values of  and v using histogram
techniques. Techniques for monitoring convergence of the Markov
chains can be found in Gelman et al. (2004).

The output from the Gibbs sampler may be used to perform
Bayesian inference on other quantities of interest. In particular,
the Pearson linear correlation coefficient, p, is often used in as-
sessing the strength of a relationship between the x and y. A
random draw from the posterior distribution for the correlation
between 1) and §;, denoted as p;, can be calculated from equa-
tion (5) for each draw from the Gibbs sampler. For the Gauss-
ian mixture model, the variance Var(n) and covariance matrix
3¢ = Var(§) are

Var(n) = 878 + o2, (107)
K
Se =Y m(Te+ mpy) — €€, (108)
=1
_ K
£= my, (109)
k=1

and Var(§;) is the jth diagonal element of 3¢. The simplification
for one covariate is self-evident.

If there is considerable posterior probability near o> ~ 0 or
72 ~ 0, then the Gibbs sampler can get “stuck.” For example,
if 72 ~ 0, then step 3a of the Gibbs sampler will draw values of
&|G ~ . Then, step 9 will produce a new value of p, that is
almost identical to the previous iteration, step 10a will produce a
new value of 7> ~ 0, and so on. The Gibbs sampler will eventually
get “unstuck,” but this can take a long time and result in very slow
convergence. In particular, it is very easy for the Gibbs sampler
to get stuck if the measurement errors are large relative to o2 or 2
or if the number of data points is small. In this situation I have
found it useful to use the Metropolis-Hastings algorithm instead.

6.2.2. Metropolis-Hastings Algorithm

If the selection function is not independent of y, given the in-
dependent variables (see eq. [40]), then posterior simulation
based on the Gibbs sampler is more complicated. In addition, if
the measurement errors are large compared to the intrinsic
dispersion in the data or if the sample size is small, then the
Gibbs sampler can become stuck and extremely inefficient. In
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p&)

FiG. 2.—Actual distribution of € (solid line) for the simulations, compared with
the best-fitting one (dashed line) and two (dash-dotted line) Gaussian fit. The two
Gaussian fit is nearly indistinguishable from the true p(£). Although the one Gauss-
ian fit provides a reasonable approximation to the distribution of &, it is not able to
pick up the asymmetry in p(§).

both of these cases, one can use the Metropolis-Hastings algo-
rithm (Metropolis & Ulam 1949; Metropolis et al. 1953; Hast-
ings 1970) to sample from the posterior distribution, as the
Metropolis-Hastings algorithm can avoid constructing Markov
chains for £ and 7). For a description of the Metropolis-Hastings
algorithm, we refer the reader to Chib & Greenberg (1995) or

Gelman et al. (2004).
7. SIMULATIONS 4%7 %
In this section I perform simulations to illustrate the effective®

ness of the Gaussian structural model for estimating the regres-
sion parameters, even in the presence of severe measurement error
and censoring. In addition, I compare the OLS, BCES(Y |.X'), and
FITEXY estimators with a MLE based on the Gaussian mixture
model with K = 1 Gaussian function.

7.1. Simulation Without Nondetections

The first simulation I performed is for a simple regression with
one independent variable. I generated 2.7 x 10° data sets by first
drawing n values of the independent variable, £, from a distribu-
tion of the form

p(§)o<e§(l +e2‘75§)_]. (110)

The distribution of ¢ is shown in Figure 2, along with the best-
fitting one and two Gaussian approximations. In this case, the
two Gaussian mixture is nearly indistinguishable from the actual
distribution of ¢ and, thus, should provide an excellent approx-
imation to p(§). The values for £ had a mean of = —0.493 and
a dispersion of 7 = 1.200. I varied the number of data points in
the simulated data sets as n = 25, 50, and 100. I then simulated
values of 17 according to equation (1), witha = 1.0 and 5 = 0.5.
The intrinsic scatter, €, had a normal distribution with mean zero
and standard deviation ¢ = 0.75, and the correlation between 7
and £ was p ~ 0.62. The joint distribution of & and 7 for one
simulated data set with » = 50 is shown in Figure 3.
Measured values for £ and 7 were simulated according to
equations (2) and (3). The measurement errors had a zero mean
normal distribution of varying dispersion and were independent
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Fic. 3.—Distributions of the simulated data for various levels of measurement error (see § 7.1). The top left panel shows the distribution of 7) as a function of £ for one
simulated data set; the solid line is the true value of the regression line. The remaining panels show the distributions of the observed values, y and x, for various levels of
measurement error. The data point with error bars in each panel is a fictitious data point and is used to illustrate the median values of the error bars. The box outlines the bounds
of the plot of 1) against . As can be seen, large measurement errors wash out any visual evidence for a correlation between the variables.

for x and y. The variances in the measurement errors, O’i ;and U)%i,
were different for each data point and drawn from a scaled in-
verse x? distribution. For the inverse x? distribution, there were
v = 5 degrees of freedom, and the scale parameters are denoted
as t and s for the x and y measurement error variances, respec-
tively. The scale parameters dictate the typical size of the mea-
surements errors and were varied as ¢t = 0.57, 7, and 27 and s =
0.5 o, 0, and 2 0. These values corresponded to values of R, ~
0.2, 0.5, and 0.8 and R, ~ 0.15, 0.4, and 0.6, respectlvely I
srmulated 10* data sets for each grld point of #, 5, and n, giving a
total of 2.7 x 10° simulated data sets. The joint distributions of x
and y for varying values of ¢/7 and s/o are also shown in Figure 3.
These values of x and y are the “measured” values of the simu-
lated data set shown in the plot of 77 as a function of £.

For each simulated data set, I calculated the MLE, found by
maximizing equation (16). For simplicity, [ only use K = 1 Gauss-
ian function. I also calculated the OLS, BCES(Y |X'), and FITEXY
estimates for comparison. I calculated an OLS estimate of o' by
subtracting the average o from the variance in the regression
residuals. Ifthe OLS estimate of o2 was negative, [ set 6ors = 0.
Following Fuller (1987), 1 est1mate 02 for a BCES(Y|X)-type
estimator as O'BCES = Var(y)— O’ -3 BcesCov(x, y), where 02 is
the average measurement error *Variance 1r1 y and BpcEs is the
BCES(Y|X) estimate of the slope. If 63 is negative, I set
6sces = 0. Following Tremaine etal. (2002) I compute a FITEXY
estlmate of o by increasing o2 until x2yy /(n — 2) = 1 or assume

= 0 if x2yy/(n —2) < 1. The sampling distributions of the
slope and intrinsic scatter estimators for n = 50 are shown in
Figures 4 and 5 as functions of #/7, and the results of the simula-
tions are summarized in Table 1.

The bias of the OLS estimate is apparent, becoming more severe
as the measurement errors in the independent variable increase. In
addition, the variance in the OLS slope estimate decreases as the
measurement errors in & increase, giving one the false impression
that one’s estimate of the slope is more precise when the mea-
surement errors are large. This has the effect of concentratmg the
OLS estimate of 3 around Sors ~ 0, thus effectively erasing any
evidence of a relationship between the two variables. When the
measurement errors are large, the OLS estimate of the intrinsic
scatter, &(%Ls: is occasionally zero.

The BCES(Y|X) estimator performs better than the OLS and
FITEXY estimators, being approximately unbiased when the mea-
surement errors are o,/ < 1. However, the BCES estimate of the
slope, Bpces = Cov(x, y)/[Var(x) — & 2], suffers some bias when
the measurement errors are large and/or “the sample size is small. In
addition, the variance in ﬂ BCEs 1s larger than the MLE, and 5 BCES
becomes considerably unstable when the measurement errors on
& are large. This 1nstab111ty results because the denominator in the
equation for Bpcs is Var(x) — 2. If 32 ~ Var(x), then the de-
nominator is ~0, and ﬁBCEs can become very large. Similar to
the OLS and FITEXY estimates, the estimate of the intrinsic var-
iance for the BCES-type estimator is often zero when the mea-
surement errors are large, suggesting the false conclusion that
there is no intrinsic scatter about the regression line.

The FITEXY estimator performed poorly in the simulations,
being both biased and highly variable. The bias of the FITEXY
estimator is such that Sgxy tends to overestimate 3, the severity
of which tends to increase as R, decreases. This upward bias in
Bexy has been noted by Weiner et al. (2006), who also performed
simulations comparing Ggxy with Gpcgs. They note that when
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Fic. 4.—Sampling distributions of the slope estimators as functions of covariate measurement error magnitude for» = 50 data points and o, ~ o, inferred from simulations
(see § 7.1). The estimators are the ordinary least-squares estimator (OLS), the BCES(Y|X) estimator, the FITEXY estimator, and the maximum-likelihood estimator (MLE) of
the K = 1 Gaussian structural model. The solid vertical lines mark the true value of 3 = 0.5, and the dashed vertical lines mark the median values of each respective estimator.
The OLS estimator is biased toward zero, while the FITEXY estimator is biased away from zero; in both cases, therbiasigetsiworse for/largermeasurement errors: The
BCES(Y|X) estimator is, in general, unbiased, but can become biased and highly variable if the measurement errors becomes large. The MLE of the Gaussian model performs

better than the other estimators, as it is approximately unbiased and less variable.

one minimizes X2yy alternatively with respect to 3 and o2 and
iterates until convergence, then the bias in Sgxy can be improved.
I'have tested this and also find that the bias in ﬁ Exy is reduced, but
at the cost of a considerable increase in variance in Sgxy. In gen-
eral, our simulations imply that the variance of the FITEXY es-
timator is comparable to that of the BCES(Y |X') estimator if one
does not iterate the minimization of Xxy» and the ~variance of
5EXY is larger if one does iterate. However, since ﬁBCES is ap-
proximately unbiased when R, is not too large, Spcgs should be
preferred over Sgxy. In addition, when the measurement errors are
large the FITEXY estimate of o is commonly 6 gxy = 0, similar to
the BCES-type estimate of the intrinsic dispersion.

The MLE based on the Gaussian structural model performs
better than the OLS, BCES, and FITEXY estimators and gives
fairly consistent estimates even in the presence of severe measure-
ment error and low sample size. The MLE is approximately un-
biased, in spite of the fact that the MLE incorrectly assumes that
the independent variables are normally distributed. The variance
in the MLE of the slope, SmLE, is smaller than that of 3pces and
BExy, particularly when R, is large. In contrast to the OLS esti-
mate of the slope, the dispersion in Gy g increases as the mea-
surement errors increase, reflecting the additional uncertainty in
OwmLe caused by the measurement errors. Finally, in contrast to

the other estimators, the MLE of the intrinsic variance is always
positive, and the probability of obtaining &g = 0 is negligible
for these simulations.

I argued in § 4.1 that assuming a uniform distribution on & does
not lead to better estimates than the usual OLS case. I also used
these simulations to estimate the sampling density of the MLE
assuming p(§) o< 1. The results were nearly indistinguishable from
the OLS estimator, supporting our conjecture that assuming p(§) o
1 does not offer an improvement over OLS.

While it is informative to compare the sampling distribution
of our proposed MLE with those of the OLS, BCES(Y|.X), and
FITEXY estimators, I do not derive the uncertainties in the re-
gression parameters from the sampling distribution of the MLE.
As described in § 6.2, we derive the uncertainties in the regression
parameters by simulating draws from the posterior distribution,
p(0,|x, ). This allows a straightforward method of interpreting
the parameter uncertainties that does not rely on large-sample
approximations, as the posterior distribution is the probability
distribution of the parameters, given the observed data. The pos-
terior distributions of p, 3, and o for a simulated data set with
n =50, oy ~ 7, and 0, ~ 0 is shown in Figure 6. When esti-
mating these posteriors, [ used K = 2 Gaussian functions in the
mixture model. As can be seen from Figure 6, the true values of
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Fic. 5.—Same as Fig. 4, but forthe standard deviation of the intrinsic'scatter, a! The solid vertical lines mark the true value of o = 0.75, and the dashed vertical lines mark
the median values of each respective estimator. All of the estimators exhibit some bias, and the BCES and FITEXY estimators can exhibit significant variance. Moreover, the
BCES and FITEXY estimators both commonly have values of 6 = 0, misleading one into concluding that there is no intrinsic scatter; this occasionally occurs for the OLS
estimate as well. In contrast, the MLE based on the Gaussian model does not suffer from this problem, at least for these simulations.

TABLE 1

DEPENDENCE OF THE ESTIMATOR SAMPLING DISTRIBUTIONS ON MEASUREMENT ERROR AND SAMPLE SIZE
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Notes.—The values given for 5’ and & are the median and interval containing 90% of the estimates over the simulations. For ex-
ample, when #/7 = s/o = 0.5 and n = 25, the median value of the OLS slope estimator is 0.357, and 90% of the values of [Sors are
contained within 0.357+§242.

# Typical value of the measurement error magnitude for the simulations.

° The number of data points in the simulated data sets.

¢ The estimate of the slope, 3. The true value is 3 = 0.5.
4 The estimate of the dispersion in the intrinsic scatter, . The true value is o = 0.75.
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Fic. 6.—Marginal posterior distributions of the linear correlation coefficient, the regression slope, and the intrinsic dispersion for a simulated data set of » = 50 data points
with o, ~ 7and 0, ~ 0. The vertical lines mark the true values of the parameters. The true values of the regression parameters are contained within the spread of the marginal
posteriors, implying that boundsion theregression parametersinfetred from the posterior are trustworthy.

p, B, and o are contained within the regions of nonnegligible
posterior probability. I have estimated posteriors for other sim-
ulated data sets, varying the number of data points and the degree
of measurement error. As one would expect, the uncertainties in
the regression parameters, represented by the widths of the pos-
terior distributions, increase as the size of the measurement er-
rors increase and the sample size decreases.

A common frequentist approach is to compute the covariance
matrix of the MLE by inverting the estimated Fisher information
matrix evaluated at the MLE. Then, under certain regularity con-
ditions, the MLE of the parameters is asymptotically normally
distributed with mean equal to the true value of the parameters
and covariance matrix equal to the inverse of the Fisher infor-
mation matrix. Furthermore, under these regularity conditions the
posterior distribution and sampling distribution of the MLE are
asymptotically the same. Figure 7 compares the posterior distri-
bution of the slope for a simulated data set with that inferred from
the MLE. The posterior and MLE were calculated assuming K = 1
Gaussian function. As can be seen, the posterior distribution for
[ is considerably different from the approximation based on the
MLE of 3, and thus, the two have not converged for this sample.
In particular, the posterior is more skewed and heavy tailed, placing
more probability on values of 3 > 0 than does the distribution
approximated by the MLE. Therefore, uncertainties in the MLE
should be interpreted with caution if using the asymptotic ap-
proximation to the sampling distribution of the MLE.

7.2. Simulation With Nondetections

To assess the effectiveness of the Gaussian structural model in
dealing with censored data sets with measurement error, I intro-
duced nondetections into the simulations. The simulations were

performed in an identical manner as that described in § 7.1, but
now I only consider sources to be “detected” ify > 1.5. For those
sources that were “censored” (y < 1.5), I placed an upper limit
on them of y = 1.5.

I focus on the results for a simulated data set with » = 100
data points and measurement errors similar to the intrinsic dis-
persion in the data, o, ~ ¢ and o, ~ 7. The detection thresh-
old of y > 1.5 resulted in a detection fraction of ~30%. This

LS T T T ]

Distribution

Fic. 7.—Posterior distributions of the slope (solid histogram), compared with
the posterior approximated from the MLE and Fisher information matrix (dashed
line), for a simulated data set of n = 50 data points with 3 = 0.5, o, ~ 7, and
o, ~ o. The two distributions have not converged and the Bayesian and frequentist
inference differ in this case, with the Bayesian approach placing more probability
near 3 =~ 0.5 and on positive values of 3.
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Fic. 8.—Distribution of ) and  (left) and the measured values of y and x (right), from a simulated censored data set of n = 50 data points, o, ~ 7,and 0, ~ o (see § 7.2).
In the plot of  and &, the filled squares denote the values of € and 7) for the detected data points, and the open squares denote the values of € and 7) for the undetected data points.
The solid line in both plots is the true regression line. In the plot of y and x, the squares denote the measured values of x and y for the detected data points, and the arrows denote
the “upper limits” on y for the undetected data points. The fictitious data point with error bars illustrates the median values of the error bars. The dash-dotted line shows the best-
fitregression line, as calculated from the posterior median of o and (3, and the shaded region defines the approximate 95% (2 o) pointwise confidence intervals on the regression
line. The true values of the regression line are contained within the 95% confidence intervals.

simulation represents a rather extreme case of large measurement
errors and low detection fraction and provides an interesting test
of the method. In Figure 8 I show the distribution of £ and 7, as
well as the distribution of their measured values, for one of the
simulated data sets. For this particular data set, there were 29 de-
tections and 71 nondetections. As can be seen, the significant cen-
soring and large measurement errors have effectively erased any
visual evidence for a relationship between the two variables.

I estimated the posterior distribution of the regression param-
eters for this data set using the Gibbs sampler (cf. § 6.2.1) with
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K = 2 Gaussian functions. The posterior median of the regres-
sion line, as well as the 95% (2 o) pointwise confidence inter-
vals' on the regression line are shown in Figure 8. The posterior
distributions for p, 8, and ¢ are shown in Figure 9. As can be

! Technically, these are called “credibility intervals,” as I am employing a
Bayesian approach. These intervals contain 95% of the posterior probability. While
the difference between confidence intervals and credibility intervals is not purely
semantical, I do not find the difference to be significant within the context of my
work, so I use the more familiar term “confidence interval.”

Posterior

Fi. 9.—Same as Fig. 6, but for the censored data set shown in Fig. 8. The true values of the regression parameters are contained within the spread of the posteriors,
implying that bounds on the regression parameters inferred from the posterior are trustworthy.
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Fic. 10.—X-ray photon index I'x as a function of log Ly, /Lr4q for 39 z < 0.8 radio-quiet quasars. In both plots, the thick solid line shows the posterior median estimate
(PME) of the regression line. In the left panel, the shaded region denotes the 95% (2 o) pointwise confidence intervals on the regression line. In the right panel, the thin solid line
shows the OLS estimate, the dashed line shows the FITEXY estimate, and the dot-dashed line shows the BCES(Y |.X') estimate; the error bars have been omitted for clarity. A

significant positive trend is implied by the data.

seen, the true value of the parameters is contained within the
95% probability regions, although the uncertainty is large. For
this particular data set, we can put limits on the value of the cor-
relation coefficient as 0.2 < p < 1 and the slope as 0 < 3 < 2.0.
For comparison, the usual MLE that ignores the measurement
error (e.g., Isobe et al. 1986) concludes § = 0.229 + 0.077.
This estimate is biased and differs from the true value of 3 at a
level of 3.5 0.

The posterior constraints on the regression parameters are broad,
reflecting our considerable uncertainty in the slope, but they are
sufficient for finding a positive correlation between the two vari-
ables, ¢ and 7. Therefore, despite the high level of censoring and
measurement error in this data set, we would still be able to con-
clude that 7 increases as & increases.

8. APPLICATION TO REAL ASTRONOMICAL DATA:
DEPENDENCE OF I'x ON Ly /Lggq
FOR RADIO-QUIET QUASARS

To further illustrate the effectiveness of the method, I apply it
to a data set drawn from my work on investigating the X-ray prop-
erties of radio-quiet quasars (RQQs). Recent work has suggested
a correlation between quasar X-ray spectral slope, ax, f;, oc v™%,
and quasar Eddington ratio, Lyo/Lgqq (€-g., Porquet et al. 2004;
Piconcelli et al. 2005; Shemmer et al. 2006). In this section I apply
the regression method to a sample of 39 z < 0.83 RQQs and con-
firm the I'x—Lyo1/Lggq correlation. Because the purpose of this
section is to illustrate the use of this regression method on real
astronomical data, I defer a more in-depth analysis to a future
paper.

Estimation of the Eddington luminosity, Lgqqg o< Mgy, requires
an estimate of the black hole mass, Mpy. Black hole virial masses
may be estimated as Mpy Rv?, where R is the broad line region
size and v is the velocity dispersion of the gas emitting the broad
emission lines. A correlation has been found between the luminosity
of a source and the size of its broad line region (the R-L rela-
tionship; e.g., Kaspi et al. 2005). One can then exploit this rela-
tionship and use the broad line FWHM as an estimate for v,
obtaining virial mass estimates Mgy o< Lv? (e.g., Wandel et al.
1999), where the exponentis 6 = 0.5 (e.g., Vestergaard & Peterson
2006). Unfortunately, the uncertainty on the broad line esti-
mates of Mpy can be considerable, having a standard deviation of

om ~ 0.4 dex (e.g., McLure & Jarvis 2002; Vestergaard &
Peterson 2006; Kelly & Bechtold 2007). For ease of comparison
with previous work, I estimate Mgy using only the H3 emission
line. The logarithm of the virial mass estimates were calculated
using the HB luminosity and FWHM according to the rela-
tionship given by Vestergaard & Peterson (2006).

My sample consists of a subset of the sample of Kelly et al.
(2007). These sources have measurements of the X-ray photon
index, I'x = ax + 1, obtained from Chandra observations and
measurements of the optical/UV luminosity at 2500 A, de-
noted as Ljsgo, obtained from Sloan Digital Sky Survey (SDSS)
spectra. The Hf profile was modeled as a sum of Gaussian func-
tions and extracted from the SDSS spectra according to the pro-
cedure described in Kelly & Bechtold 2007. I estimated the Hj3
FWHM and luminosity from the line profile fits.

I estimate the bolometric luminosity Ly, from the luminos-
ity at 2500 A, assuming a constant bolometric correction Ly, =
5.6L,s500 (Elvis et al. 1994). The standard deviation in this bolo-
metric correction reported by Elvis et al. (1994) is 3.1, implying an
uncertainty in log Lyo of 001 ~ 0.25 dex. Combining this with the
~0.4 dex uncertainty on log Mgy, the total “measurement error”
on log Lyo/Lgqq becomes o, ~ 0.47 dex. The distribution of I'x
as a function of log Ly /Lg4q is shown in Figure 10. As can be seen,
the measurement errors on both I'x and log Ly, /Lgqq are large and
make a considerable contribution to the observed scatter in both
variables, where R, ~ 0.1 and R, ~ 0.8. Therefore, we expect the
measurement errors to have a significant effect on the correlation
and regression analysis.

I performed the regression assuming the linear form I'x = a+
B 10g Lyo1/Lggq and modelling the intrinsic distribution of log Ly/
Lggq using K = 2 Gaussian functions. Draws from the posterior
were obtained using the Gibbs sampler. The marginal poste-
rior distributions for (3, o, and the correlation between I'x and
log Lioi/Lgqd, p, are shown in Figure 11, and the posterior median
and 95% (2 o) pointwise intervals on the regression line are shown
in Figure 10. The posterior median estimate of the parameters are
& = 3.12 £ 0.41 for the constant, § = 1.35 4 0.54 for the slope,
6 =0.26 £ 0.11 for the intrinsic scatter about the regression
line, ,15 = —0.77 % 0.10 for the mean of log Lyoi/LEad, and 6¢ =
0.32 4 0.12 dex for the dispersion in log Ly, /Lg4q. Here, I have
used a robust estimate of the posterior standard deviation as an
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Fig. 11.—Same as Fig. 6, but for the I'x — log Lpo/Lr4q regression. Although the uncertainty on the slope and correlation are large, the bounds on them implied by the

dataare 0 < 3<3.5and 0.2<p=<1.0.

“error bar” on the parameters. These results imply that the ob-
served scatter in log Ly /Lgqq s dominated by measurement er-
ror, o, /T ~ 1.5, as expected from the large value of R,.

_ For comparison, the BCES(Y|X) estimate of the slope is
Beces = 3.29 & 3.34, the FITEXY estimate is Bpxy = 1.76 %
0.49, and the OLS estimate is Bors = 0.56 & 0.14; the standard
error on Jgxy was estimated using bootstrapping. Figure 10 also
compares the OLS, BCES, and FITEXY best-fit lines with the
posterior median estimate. The 95% confidence region on the slope
implied by the posterior draws is 0.46 < (3 < 3.44, whereas the ap-
proximate 95% confidence region implied by the BCES, FITEXY,
and OLS standard errors are —3.26 < 3 < 9.84, 0.80 < A<
2.72,and 0.42 < (3 < 0.70, respectively. The OLS and FITEXY
estimates and the Bayesian approach give “statistically signifi-
cant” evidence for a correlation between log Lyo1/Lgqq and I'x;
however, the BCES estimate is too variable to rule out the null
hypothesis of no correlation. As noted before, the large measure-
ment errors on log Ly, /Lggq bias the OLS estimate of 5 toward
shallower values and the FITEXY estimate of 3 toward steeper
values. Because of this bias, confidence regions based on Sors
and Jgxy are not valid, because they are not centered on the true
value of § and, thus, do not contain the true value with the stated
probability (e.g., 95%). On the other hand, confidence regions
based on the BCES estimate are likely to be approximately valid;
however, in this example the large measurement errors have caused
OBces to be too variable to give meaningful constraints on the
regression slope.

The BCES-type estimate of the intrinsic dispersion was 6 gcgs =
0.32, and the OLS estimate of the intrinsic dispersion was Gors =
0.41, where both were calculated in the same manner as in § 7.1.
The FITEXY estimate of the intrinsic dispersion was dgxy = 0,
as X%&xy/(n — 2) < 1. The BCES-type estimate of o is similar to

the Bayesian posterior median estimate, while 5ors overestimates
the scatter compared to the Bayesian estimate by ~58%. In con-
trast, the FITEXY estimator does not find any evidence for intrinsic
scatter in the regression, which is inconsistent with the posterior
distribution of o.

From the posterior distribution, we can constrain the corre-
lation between I'x and log Ly /Lggq to be 0.328 < p < 0.998 with
~95% probability, confirming the positive correlation between
I'x and Eddington ratio seen previously. The posterior median es-
timate of the correlation is p = 0.87, compared with an estimate
of 77 = 0.54 if one naively calculates the correlation directly from
the measured data. The large measurement errors significantly at-
tenuate the observed correlation, making the observed correlation
between I'x and log Ly, /Lgg4q appear weaker than if one does not
correct for the measurement errors.

9. CONCLUSIONS

In this work I have derived a likelihood function for handling
measurement errors in linear regression of astronomical data. Our
probability model assumes that the measurement errors are Gauss-
1an with zero mean and known variance, that the intrinsic scatter in
the dependent variable about the regression line is Gaussian, and
that the intrinsic distribution of the independent variables can be
well approximated as a mixture of Gaussian functions. I extend
this model to enable the inclusion of nondetections and describe
how to incorporate the data selection process. A Gibbs sampler is
described to enable simulating random draws from the posterior
distribution.

I illustrated the effectiveness of the structural Gaussian mixture
model using simulation. For the specific simulations performed, a
MLE based on the Gaussian structural model performed better
than the OLS, BCES(Y|X), and FITEXY estimators, especially
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when the measurement errors were large. In addition, our method
also performed well when the measurement errors were large and
the detection fraction was small, with the posterior distributions
giving reasonable bounds on the regression parameters. These re-
sults were in spite of the fact that the intrinsic distribution of the in-
dependent variable was not a sum of Gaussian functions for the
simulations, suggesting that approximating the distribution of the
independent variable as a mixture of Gaussian functions does not
lead to a significant bias in the results. Finally, I concluded by us-
ing the method to fit the radio-quiet quasar X-ray photon index as
a function of log Ly /Lgqq, using a sample of 39 z < 0.83 sources.
The posterior distribution for this data set constrained the slope
to be 0 < B < 3.5 and the linear correlation coefficient to be 0.2 <
p < 1.0, confirming the correlation between X-ray spectral slope
and Eddington ratio seen by other authors.

Although I have focused on linear regression in this work, the
approach that I have taken is quite general and can be applied to
other applications. In particular, equations (11), (40), and (42)

are derived under general conditions and are not limited to regres-
sion. In this work, I assume forms for the respective probability
densities that are appropriate for linear regression; however,
these equations provide a framework for constructing more gen-
eral probability models of one’s data, as in, for example, non-
linear fitting or estimation of luminosity functions.

IDL routines for constructing Markov chains for sampling from
the posterior are publicly available from B. Kelly.

This work was supported in part by NSF grant AST 03-07384.
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